Spaces:
Runtime error
Runtime error
Commit
·
e6da15b
1
Parent(s):
99cdea0
Update
Browse files
app.py
CHANGED
|
@@ -7,7 +7,9 @@ import json
|
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
from functools import partial
|
|
|
|
| 10 |
import math
|
|
|
|
| 11 |
|
| 12 |
from gradio import processing_utils
|
| 13 |
from typing import Optional
|
|
@@ -42,20 +44,56 @@ def ckpt_load_helper(modality, is_inpaint, is_style, common_instances=None):
|
|
| 42 |
return loaded_model_list, common_instances
|
| 43 |
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
'gligen-generation-text-image-box',
|
| 57 |
-
is_inpaint=False, is_style=True, common_instances=common_instances
|
| 58 |
-
)[0]
|
| 59 |
|
| 60 |
|
| 61 |
def load_clip_model():
|
|
@@ -143,7 +181,7 @@ def inference(task, language_instruction, grounding_instruction, inpainting_boxe
|
|
| 143 |
image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
|
| 144 |
|
| 145 |
batch_size = int(batch_size)
|
| 146 |
-
if not 1 <= batch_size <=
|
| 147 |
batch_size = 2
|
| 148 |
|
| 149 |
if style_image == None:
|
|
@@ -183,13 +221,13 @@ def inference(task, language_instruction, grounding_instruction, inpainting_boxe
|
|
| 183 |
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
| 184 |
if task == 'Grounded Generation':
|
| 185 |
if style_image == None:
|
| 186 |
-
return grounded_generation_box(
|
| 187 |
else:
|
| 188 |
-
return grounded_generation_box(
|
| 189 |
elif task == 'Grounded Inpainting':
|
| 190 |
assert image is not None
|
| 191 |
instruction['input_image'] = image.convert("RGB")
|
| 192 |
-
return grounded_generation_box(
|
| 193 |
|
| 194 |
|
| 195 |
def draw_box(boxes=[], texts=[], img=None):
|
|
@@ -498,7 +536,7 @@ with Blocks(
|
|
| 498 |
with gr.Column():
|
| 499 |
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (τ)")
|
| 500 |
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
|
| 501 |
-
batch_size = gr.Slider(minimum=1, maximum=
|
| 502 |
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption")
|
| 503 |
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
|
| 504 |
with gr.Row():
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
from PIL import Image, ImageDraw, ImageFont
|
| 9 |
from functools import partial
|
| 10 |
+
from collections import Counter
|
| 11 |
import math
|
| 12 |
+
import gc
|
| 13 |
|
| 14 |
from gradio import processing_utils
|
| 15 |
from typing import Optional
|
|
|
|
| 44 |
return loaded_model_list, common_instances
|
| 45 |
|
| 46 |
|
| 47 |
+
class Instance:
|
| 48 |
+
def __init__(self, capacity = 2):
|
| 49 |
+
self.model_type = 'base'
|
| 50 |
+
self.loaded_model_list = {}
|
| 51 |
+
self.counter = Counter()
|
| 52 |
+
self.counter['base'] = 0
|
| 53 |
+
self.loaded_model_list['base'], self.common_instances = ckpt_load_helper(
|
| 54 |
+
'gligen-generation-text-box',
|
| 55 |
+
is_inpaint=False, is_style=False, common_instances=None
|
| 56 |
+
)
|
| 57 |
+
self.capacity = capacity
|
| 58 |
+
|
| 59 |
+
def get_model(self, model_type):
|
| 60 |
+
if model_type in self.loaded_model_list:
|
| 61 |
+
self.counter[model_type] += 1
|
| 62 |
+
print(self.counter)
|
| 63 |
+
return self.loaded_model_list[model_type]
|
| 64 |
+
|
| 65 |
+
if self.capacity == len(self.loaded_model_list):
|
| 66 |
+
least_used_type = self.counter.most_common()[-1][0]
|
| 67 |
+
del self.loaded_model_list[least_used_type]
|
| 68 |
+
del self.counter[least_used_type]
|
| 69 |
+
gc.collect()
|
| 70 |
+
torch.cuda.empty_cache()
|
| 71 |
+
|
| 72 |
+
self.counter[model_type] = 1
|
| 73 |
+
self.loaded_model_list[model_type] = self._get_model(model_type)
|
| 74 |
+
print(self.counter)
|
| 75 |
+
return self.loaded_model_list[model_type]
|
| 76 |
+
|
| 77 |
+
def _get_model(self, model_type):
|
| 78 |
+
if model_type == 'base':
|
| 79 |
+
return ckpt_load_helper(
|
| 80 |
+
'gligen-generation-text-box',
|
| 81 |
+
is_inpaint=False, is_style=False, common_instances=self.common_instances
|
| 82 |
+
)[0]
|
| 83 |
+
elif model_type == 'inpaint':
|
| 84 |
+
return ckpt_load_helper(
|
| 85 |
+
'gligen-inpainting-text-box',
|
| 86 |
+
is_inpaint=True, is_style=False, common_instances=self.common_instances
|
| 87 |
+
)[0]
|
| 88 |
+
elif model_type == 'style':
|
| 89 |
+
return ckpt_load_helper(
|
| 90 |
+
'gligen-generation-text-image-box',
|
| 91 |
+
is_inpaint=False, is_style=True, common_instances=self.common_instances
|
| 92 |
+
)[0]
|
| 93 |
+
|
| 94 |
+
assert False
|
| 95 |
|
| 96 |
+
instance = Instance()
|
|
|
|
|
|
|
|
|
|
| 97 |
|
| 98 |
|
| 99 |
def load_clip_model():
|
|
|
|
| 181 |
image_list = [placeholder_image] * len(phrase_list) # placeholder input for visual prompt, which is disabled
|
| 182 |
|
| 183 |
batch_size = int(batch_size)
|
| 184 |
+
if not 1 <= batch_size <= 4:
|
| 185 |
batch_size = 2
|
| 186 |
|
| 187 |
if style_image == None:
|
|
|
|
| 221 |
with torch.autocast(device_type='cuda', dtype=torch.float16):
|
| 222 |
if task == 'Grounded Generation':
|
| 223 |
if style_image == None:
|
| 224 |
+
return grounded_generation_box(instance.get_model('base'), instruction, *args, **kwargs)
|
| 225 |
else:
|
| 226 |
+
return grounded_generation_box(instance.get_model('style'), instruction, *args, **kwargs)
|
| 227 |
elif task == 'Grounded Inpainting':
|
| 228 |
assert image is not None
|
| 229 |
instruction['input_image'] = image.convert("RGB")
|
| 230 |
+
return grounded_generation_box(instance.get_model('inpaint'), instruction, *args, **kwargs)
|
| 231 |
|
| 232 |
|
| 233 |
def draw_box(boxes=[], texts=[], img=None):
|
|
|
|
| 536 |
with gr.Column():
|
| 537 |
alpha_sample = gr.Slider(minimum=0, maximum=1.0, step=0.1, value=0.3, label="Scheduled Sampling (τ)")
|
| 538 |
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
|
| 539 |
+
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=2, label="Number of Samples")
|
| 540 |
append_grounding = gr.Checkbox(value=True, label="Append grounding instructions to the caption")
|
| 541 |
use_actual_mask = gr.Checkbox(value=False, label="Use actual mask for inpainting", visible=False)
|
| 542 |
with gr.Row():
|