Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,26 +1,116 @@
|
|
| 1 |
-
# app.
|
| 2 |
import gradio as gr
|
| 3 |
-
from transformers import AutoTokenizer, AutoModel, AutoFeatureExtractor
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Function to generate caption
|
| 13 |
def generate_caption(image):
|
| 14 |
# Preprocess image
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# Generate
|
| 18 |
with torch.no_grad():
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Create Gradio interface
|
| 26 |
interface = gr.Interface(
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
import torch
|
| 4 |
from PIL import Image
|
| 5 |
+
import json
|
| 6 |
+
import os
|
| 7 |
+
from tokenizers import ByteLevelBPETokenizer # Changed from Tokenizer
|
| 8 |
+
from torchvision import transforms
|
| 9 |
|
| 10 |
+
# ============================================================
|
| 11 |
+
# 3. Model (Tiny CNN + Transformer Decoder) - Re-define model classes
|
| 12 |
+
# ============================================================
|
| 13 |
+
class CNNEncoder(torch.nn.Module):
|
| 14 |
+
def __init__(self, embed_dim=128):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.cnn = torch.nn.Sequential(
|
| 17 |
+
torch.nn.Conv2d(3, 32, 3, 2, 1), torch.nn.ReLU(),
|
| 18 |
+
torch.nn.Conv2d(32, 64, 3, 2, 1), torch.nn.ReLU(),
|
| 19 |
+
torch.nn.Conv2d(64, 128, 3, 2, 1), torch.nn.ReLU(),
|
| 20 |
+
torch.nn.AdaptiveAvgPool2d((1,1))
|
| 21 |
+
)
|
| 22 |
+
self.fc = torch.nn.Linear(128, embed_dim)
|
| 23 |
+
def forward(self, x):
|
| 24 |
+
x = self.cnn(x)
|
| 25 |
+
x = x.view(x.size(0), -1)
|
| 26 |
+
return self.fc(x)
|
| 27 |
+
|
| 28 |
+
class TransformerDecoder(torch.nn.Module):
|
| 29 |
+
def __init__(self, vocab_size, embed_dim=128, nhead=4, num_layers=2, max_len=40):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.embed = torch.nn.Embedding(vocab_size, embed_dim)
|
| 32 |
+
decoder_layer = torch.nn.TransformerDecoderLayer(d_model=embed_dim, nhead=nhead)
|
| 33 |
+
self.decoder = torch.nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
| 34 |
+
self.fc_out = torch.nn.Linear(embed_dim, vocab_size)
|
| 35 |
+
self.pos_embed = torch.nn.Embedding(max_len, embed_dim)
|
| 36 |
+
|
| 37 |
+
def forward(self, tgt, memory):
|
| 38 |
+
positions = torch.arange(0, tgt.shape[1], device=tgt.device).unsqueeze(0)
|
| 39 |
+
tgt_emb = self.embed(tgt) + self.pos_embed(positions)
|
| 40 |
+
memory = memory.unsqueeze(0)
|
| 41 |
+
out = self.decoder(tgt_emb.transpose(0,1), memory)
|
| 42 |
+
return self.fc_out(out.transpose(0,1))
|
| 43 |
+
|
| 44 |
+
class ImageCaptionModel(torch.nn.Module):
|
| 45 |
+
def __init__(self, vocab_size, embed_dim=128):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.encoder = CNNEncoder(embed_dim)
|
| 48 |
+
self.decoder = TransformerDecoder(vocab_size, embed_dim)
|
| 49 |
+
def forward(self, images, captions):
|
| 50 |
+
feats = self.encoder(images)
|
| 51 |
+
return self.decoder(captions, feats)
|
| 52 |
+
|
| 53 |
+
# ============================================================
|
| 54 |
+
# Load the tokenizer and model manually
|
| 55 |
+
# ============================================================
|
| 56 |
+
|
| 57 |
+
# Load config
|
| 58 |
+
with open("radiology_caption_model/config.json", "r") as f:
|
| 59 |
+
config = json.load(f)
|
| 60 |
+
|
| 61 |
+
# Load tokenizer - Corrected to use ByteLevelBPETokenizer with both files
|
| 62 |
+
tokenizer = ByteLevelBPETokenizer("radiology_caption_model/vocab.json", "radiology_caption_model/merges.txt")
|
| 63 |
+
|
| 64 |
+
# Instantiate the model with config parameters
|
| 65 |
+
model = ImageCaptionModel(
|
| 66 |
+
vocab_size=config["vocab_size"],
|
| 67 |
+
embed_dim=config["embed_dim"]
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
# Load the model weights
|
| 71 |
+
model.load_state_dict(torch.load("radiology_caption_model/pytorch_model.bin", map_location=torch.device('cpu')))
|
| 72 |
+
model.eval() # Set model to evaluation mode
|
| 73 |
+
|
| 74 |
+
# Define image transformations
|
| 75 |
+
image_size = 128 # Must match training image size
|
| 76 |
+
img_transforms = transforms.Compose([
|
| 77 |
+
transforms.Resize((image_size, image_size)),
|
| 78 |
+
transforms.ToTensor(),
|
| 79 |
+
transforms.Normalize(mean=[0.485,0.456,0.406],
|
| 80 |
+
std=[0.229,0.224,0.225]),
|
| 81 |
+
])
|
| 82 |
|
| 83 |
# Function to generate caption
|
| 84 |
def generate_caption(image):
|
| 85 |
# Preprocess image
|
| 86 |
+
img_tensor = img_transforms(image).unsqueeze(0) # Add batch dimension
|
| 87 |
+
|
| 88 |
+
# Generate caption
|
| 89 |
with torch.no_grad():
|
| 90 |
+
# Get image features
|
| 91 |
+
image_features = model.encoder(img_tensor)
|
| 92 |
+
|
| 93 |
+
# Start caption generation with BOS token
|
| 94 |
+
# (We assume BOS token ID is 2 from tokenizer training in cell 1)
|
| 95 |
+
# (Padding token ID is 0)
|
| 96 |
+
caption_tokens = [tokenizer.token_to_id("[BOS]")]
|
| 97 |
+
max_len = config["max_len"] if "max_len" in config else 40 # Use max_len from config, fallback to 40
|
| 98 |
+
|
| 99 |
+
for _ in range(max_len - 1): # -1 because BOS is already there
|
| 100 |
+
input_tokens = torch.tensor(caption_tokens).unsqueeze(0) # Add batch dimension
|
| 101 |
+
output = model.decoder(input_tokens, image_features)
|
| 102 |
+
last_token_logits = output[0, -1, :]
|
| 103 |
+
predicted_token_id = torch.argmax(last_token_logits).item()
|
| 104 |
+
|
| 105 |
+
caption_tokens.append(predicted_token_id)
|
| 106 |
+
|
| 107 |
+
# Stop if EOS token is generated
|
| 108 |
+
if predicted_token_id == tokenizer.token_to_id("[EOS]"):
|
| 109 |
+
break
|
| 110 |
+
|
| 111 |
+
# Decode the output tokens, excluding BOS and EOS (if present)
|
| 112 |
+
decoded_caption = tokenizer.decode(caption_tokens[1:-1] if caption_tokens[-1] == tokenizer.token_to_id("[EOS]") else caption_tokens[1:])
|
| 113 |
+
return decoded_caption
|
| 114 |
|
| 115 |
# Create Gradio interface
|
| 116 |
interface = gr.Interface(
|