Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,125 +1,41 @@
|
|
| 1 |
-
# app.py
|
| 2 |
import gradio as gr
|
| 3 |
-
import
|
| 4 |
from PIL import Image
|
| 5 |
-
import
|
| 6 |
-
import os
|
| 7 |
-
from tokenizers import ByteLevelBPETokenizer # Changed from Tokenizer
|
| 8 |
-
from torchvision import transforms
|
| 9 |
|
| 10 |
-
#
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
def __init__(self, embed_dim=128):
|
| 15 |
-
super().__init__()
|
| 16 |
-
self.cnn = torch.nn.Sequential(
|
| 17 |
-
torch.nn.Conv2d(3, 32, 3, 2, 1), torch.nn.ReLU(),
|
| 18 |
-
torch.nn.Conv2d(32, 64, 3, 2, 1), torch.nn.ReLU(),
|
| 19 |
-
torch.nn.Conv2d(64, 128, 3, 2, 1), torch.nn.ReLU(),
|
| 20 |
-
torch.nn.AdaptiveAvgPool2d((1,1))
|
| 21 |
-
)
|
| 22 |
-
self.fc = torch.nn.Linear(128, embed_dim)
|
| 23 |
-
def forward(self, x):
|
| 24 |
-
x = self.cnn(x)
|
| 25 |
-
x = x.view(x.size(0), -1)
|
| 26 |
-
return self.fc(x)
|
| 27 |
|
| 28 |
-
class TransformerDecoder(torch.nn.Module):
|
| 29 |
-
def __init__(self, vocab_size, embed_dim=128, nhead=4, num_layers=2, max_len=40):
|
| 30 |
-
super().__init__()
|
| 31 |
-
self.embed = torch.nn.Embedding(vocab_size, embed_dim)
|
| 32 |
-
decoder_layer = torch.nn.TransformerDecoderLayer(d_model=embed_dim, nhead=nhead)
|
| 33 |
-
self.decoder = torch.nn.TransformerDecoder(decoder_layer, num_layers=num_layers)
|
| 34 |
-
self.fc_out = torch.nn.Linear(embed_dim, vocab_size)
|
| 35 |
-
self.pos_embed = torch.nn.Embedding(max_len, embed_dim)
|
| 36 |
-
|
| 37 |
-
def forward(self, tgt, memory):
|
| 38 |
-
positions = torch.arange(0, tgt.shape[1], device=tgt.device).unsqueeze(0)
|
| 39 |
-
tgt_emb = self.embed(tgt) + self.pos_embed(positions)
|
| 40 |
-
memory = memory.unsqueeze(0)
|
| 41 |
-
out = self.decoder(tgt_emb.transpose(0,1), memory)
|
| 42 |
-
return self.fc_out(out.transpose(0,1))
|
| 43 |
-
|
| 44 |
-
class ImageCaptionModel(torch.nn.Module):
|
| 45 |
-
def __init__(self, vocab_size, embed_dim=128):
|
| 46 |
-
super().__init__()
|
| 47 |
-
self.encoder = CNNEncoder(embed_dim)
|
| 48 |
-
self.decoder = TransformerDecoder(vocab_size, embed_dim)
|
| 49 |
-
def forward(self, images, captions):
|
| 50 |
-
feats = self.encoder(images)
|
| 51 |
-
return self.decoder(captions, feats)
|
| 52 |
-
|
| 53 |
-
# ============================================================
|
| 54 |
-
# Load the tokenizer and model manually
|
| 55 |
-
# ============================================================
|
| 56 |
-
|
| 57 |
-
# Load config
|
| 58 |
-
with open("hackergeek/radiology-image-captioning/config.json", "r") as f:
|
| 59 |
-
config = json.load(f)
|
| 60 |
-
|
| 61 |
-
# Load tokenizer - Corrected to use ByteLevelBPETokenizer with both files
|
| 62 |
-
tokenizer = ByteLevelBPETokenizer("radiology_caption_model/vocab.json", "radiology_caption_model/merges.txt")
|
| 63 |
-
|
| 64 |
-
# Instantiate the model with config parameters
|
| 65 |
-
model = ImageCaptionModel(
|
| 66 |
-
vocab_size=config["vocab_size"],
|
| 67 |
-
embed_dim=config["embed_dim"]
|
| 68 |
-
)
|
| 69 |
-
|
| 70 |
-
# Load the model weights
|
| 71 |
-
model.load_state_dict(torch.load("radiology_caption_model/pytorch_model.bin", map_location=torch.device('cpu')))
|
| 72 |
-
model.eval() # Set model to evaluation mode
|
| 73 |
-
|
| 74 |
-
# Define image transformations
|
| 75 |
-
image_size = 128 # Must match training image size
|
| 76 |
-
img_transforms = transforms.Compose([
|
| 77 |
-
transforms.Resize((image_size, image_size)),
|
| 78 |
-
transforms.ToTensor(),
|
| 79 |
-
transforms.Normalize(mean=[0.485,0.456,0.406],
|
| 80 |
-
std=[0.229,0.224,0.225]),
|
| 81 |
-
])
|
| 82 |
-
|
| 83 |
-
# Function to generate caption
|
| 84 |
def generate_caption(image):
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
#
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
max_len = config["max_len"] if "max_len" in config else 40 # Use max_len from config, fallback to 40
|
| 98 |
-
|
| 99 |
-
for _ in range(max_len - 1): # -1 because BOS is already there
|
| 100 |
-
input_tokens = torch.tensor(caption_tokens).unsqueeze(0) # Add batch dimension
|
| 101 |
-
output = model.decoder(input_tokens, image_features)
|
| 102 |
-
last_token_logits = output[0, -1, :]
|
| 103 |
-
predicted_token_id = torch.argmax(last_token_logits).item()
|
| 104 |
-
|
| 105 |
-
caption_tokens.append(predicted_token_id)
|
| 106 |
-
|
| 107 |
-
# Stop if EOS token is generated
|
| 108 |
-
if predicted_token_id == tokenizer.token_to_id("[EOS]"):
|
| 109 |
-
break
|
| 110 |
-
|
| 111 |
-
# Decode the output tokens, excluding BOS and EOS (if present)
|
| 112 |
-
decoded_caption = tokenizer.decode(caption_tokens[1:-1] if caption_tokens[-1] == tokenizer.token_to_id("[EOS]") else caption_tokens[1:])
|
| 113 |
-
return decoded_caption
|
| 114 |
|
| 115 |
# Create Gradio interface
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
| 117 |
fn=generate_caption,
|
| 118 |
-
inputs=gr.Image(type="pil"),
|
| 119 |
-
outputs="
|
| 120 |
-
title=
|
| 121 |
-
description=
|
|
|
|
|
|
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
if __name__ == "__main__":
|
| 125 |
-
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
| 3 |
from PIL import Image
|
| 4 |
+
import requests
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
+
# Load model and processor
|
| 7 |
+
model_name = "hackergeek/radiology-image-captioning"
|
| 8 |
+
processor = BlipProcessor.from_pretrained(model_name)
|
| 9 |
+
model = BlipForConditionalGeneration.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
def generate_caption(image):
|
| 12 |
+
"""
|
| 13 |
+
Generates a radiology caption for a given image
|
| 14 |
+
"""
|
| 15 |
+
if isinstance(image, str): # if image is a URL
|
| 16 |
+
image = Image.open(requests.get(image, stream=True).raw).convert("RGB")
|
| 17 |
+
elif isinstance(image, Image.Image):
|
| 18 |
+
image = image.convert("RGB")
|
| 19 |
+
|
| 20 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 21 |
+
out = model.generate(**inputs)
|
| 22 |
+
caption = processor.decode(out[0], skip_special_tokens=True)
|
| 23 |
+
return caption
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# Create Gradio interface
|
| 26 |
+
title = "Radiology Image Captioning"
|
| 27 |
+
description = "Upload a radiology image (X-ray, CT, MRI) and get an automatic caption generated by the `hackergeek/radiology-image-captioning` model."
|
| 28 |
+
|
| 29 |
+
iface = gr.Interface(
|
| 30 |
fn=generate_caption,
|
| 31 |
+
inputs=gr.Image(type="pil", label="Upload Radiology Image"),
|
| 32 |
+
outputs=gr.Textbox(label="Generated Caption"),
|
| 33 |
+
title=title,
|
| 34 |
+
description=description,
|
| 35 |
+
examples=[
|
| 36 |
+
["https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/medical_xray.png"]
|
| 37 |
+
]
|
| 38 |
)
|
| 39 |
|
| 40 |
if __name__ == "__main__":
|
| 41 |
+
iface.launch()
|