Spaces:
Sleeping
Sleeping
Update working_yolo_pipeline.py
Browse files- working_yolo_pipeline.py +1345 -7
working_yolo_pipeline.py
CHANGED
|
@@ -1546,6 +1546,1345 @@
|
|
| 1546 |
|
| 1547 |
|
| 1548 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1549 |
import json
|
| 1550 |
import argparse
|
| 1551 |
import os
|
|
@@ -1836,7 +3175,6 @@ def calculate_vertical_gap_coverage(word_data: list, sep_x: int, page_height: fl
|
|
| 1836 |
|
| 1837 |
|
| 1838 |
|
| 1839 |
-
|
| 1840 |
def calculate_x_gutters(word_data: list, params: Dict, page_height: float) -> List[int]:
|
| 1841 |
"""
|
| 1842 |
Calculates X-axis histogram and validates using BRIDGING DENSITY and Vertical Coverage.
|
|
@@ -1859,7 +3197,7 @@ def calculate_x_gutters(word_data: list, params: Dict, page_height: float) -> Li
|
|
| 1859 |
|
| 1860 |
# Histogram Setup
|
| 1861 |
bin_size = params.get('cluster_bin_size', 5)
|
| 1862 |
-
smoothing = params.get('cluster_smoothing',
|
| 1863 |
min_width = params.get('cluster_min_width', 20)
|
| 1864 |
threshold_percentile = params.get('cluster_threshold_percentile', 85)
|
| 1865 |
|
|
@@ -1898,15 +3236,15 @@ def calculate_x_gutters(word_data: list, params: Dict, page_height: float) -> Li
|
|
| 1898 |
|
| 1899 |
# THRESHOLD: If bridging blocks > 8% of page height, REJECT.
|
| 1900 |
# This allows for page numbers or headers (usually < 5%) to cross, but NOT paragraphs.
|
| 1901 |
-
if bridging_ratio > 0.
|
| 1902 |
-
print(f" ❌ Separator X={x_coord} REJECTED: Bridging Ratio {bridging_ratio:.1%} (>
|
| 1903 |
continue
|
| 1904 |
|
| 1905 |
# --- CHECK 2: VERTICAL GAP COVERAGE (The "Clean Split" Check) ---
|
| 1906 |
# The gap must exist cleanly for > 65% of the text height.
|
| 1907 |
coverage = calculate_vertical_gap_coverage(word_data, x_coord, page_height, gutter_width=min_width)
|
| 1908 |
|
| 1909 |
-
if coverage >= 0.
|
| 1910 |
final_separators.append(x_coord)
|
| 1911 |
print(f" -> Separator X={x_coord} ACCEPTED (Coverage: {coverage:.1%}, Bridging: {bridging_ratio:.1%})")
|
| 1912 |
else:
|
|
@@ -2033,8 +3371,8 @@ def preprocess_and_ocr_page(original_img: np.ndarray, model, pdf_path: str,
|
|
| 2033 |
page_height_pdf = fitz_page.rect.height
|
| 2034 |
|
| 2035 |
column_detection_params = {
|
| 2036 |
-
'cluster_bin_size':
|
| 2037 |
-
'cluster_min_width':
|
| 2038 |
}
|
| 2039 |
|
| 2040 |
separators = calculate_x_gutters(masked_word_data, column_detection_params, page_height_pdf)
|
|
|
|
| 1546 |
|
| 1547 |
|
| 1548 |
|
| 1549 |
+
|
| 1550 |
+
|
| 1551 |
+
|
| 1552 |
+
|
| 1553 |
+
|
| 1554 |
+
|
| 1555 |
+
|
| 1556 |
+
|
| 1557 |
+
|
| 1558 |
+
|
| 1559 |
+
|
| 1560 |
+
|
| 1561 |
+
|
| 1562 |
+
|
| 1563 |
+
|
| 1564 |
+
|
| 1565 |
+
|
| 1566 |
+
|
| 1567 |
+
|
| 1568 |
+
|
| 1569 |
+
|
| 1570 |
+
|
| 1571 |
+
|
| 1572 |
+
|
| 1573 |
+
|
| 1574 |
+
|
| 1575 |
+
|
| 1576 |
+
|
| 1577 |
+
# import json
|
| 1578 |
+
# import argparse
|
| 1579 |
+
# import os
|
| 1580 |
+
# import re
|
| 1581 |
+
# import torch
|
| 1582 |
+
# import torch.nn as nn
|
| 1583 |
+
# from TorchCRF import CRF
|
| 1584 |
+
# from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model, LayoutLMv3Config
|
| 1585 |
+
# from typing import List, Dict, Any, Optional, Union, Tuple
|
| 1586 |
+
# import fitz # PyMuPDF
|
| 1587 |
+
# import numpy as np
|
| 1588 |
+
# import cv2
|
| 1589 |
+
# from ultralytics import YOLO
|
| 1590 |
+
# import glob
|
| 1591 |
+
# import pytesseract
|
| 1592 |
+
# from PIL import Image
|
| 1593 |
+
# from scipy.signal import find_peaks
|
| 1594 |
+
# from scipy.ndimage import gaussian_filter1d
|
| 1595 |
+
# import sys
|
| 1596 |
+
# import io
|
| 1597 |
+
# import base64
|
| 1598 |
+
# import tempfile
|
| 1599 |
+
# import time
|
| 1600 |
+
# import shutil
|
| 1601 |
+
|
| 1602 |
+
# # ============================================================================
|
| 1603 |
+
# # --- CONFIGURATION AND CONSTANTS ---
|
| 1604 |
+
# # ============================================================================
|
| 1605 |
+
|
| 1606 |
+
# # NOTE: Update these paths to match your environment before running!
|
| 1607 |
+
# WEIGHTS_PATH = 'YOLO_MATH/yolo_split_data/runs/detect/math_figure_detector_v3/weights/best.pt'
|
| 1608 |
+
# DEFAULT_LAYOUTLMV3_MODEL_PATH = "layoutlmv3_trained_20251118.pth"
|
| 1609 |
+
|
| 1610 |
+
# # DIRECTORY CONFIGURATION
|
| 1611 |
+
# OCR_JSON_OUTPUT_DIR = './ocr_json_output_final'
|
| 1612 |
+
# FIGURE_EXTRACTION_DIR = './figure_extraction'
|
| 1613 |
+
# TEMP_IMAGE_DIR = './temp_pdf_images'
|
| 1614 |
+
|
| 1615 |
+
# # Detection parameters
|
| 1616 |
+
# CONF_THRESHOLD = 0.2
|
| 1617 |
+
# TARGET_CLASSES = ['figure', 'equation']
|
| 1618 |
+
# IOU_MERGE_THRESHOLD = 0.4
|
| 1619 |
+
# IOA_SUPPRESSION_THRESHOLD = 0.7
|
| 1620 |
+
# LINE_TOLERANCE = 15
|
| 1621 |
+
|
| 1622 |
+
# # Global counters for sequential numbering across the entire PDF
|
| 1623 |
+
# GLOBAL_FIGURE_COUNT = 0
|
| 1624 |
+
# GLOBAL_EQUATION_COUNT = 0
|
| 1625 |
+
|
| 1626 |
+
# # LayoutLMv3 Labels
|
| 1627 |
+
# ID_TO_LABEL = {
|
| 1628 |
+
# 0: "O",
|
| 1629 |
+
# 1: "B-QUESTION", 2: "I-QUESTION",
|
| 1630 |
+
# 3: "B-OPTION", 4: "I-OPTION",
|
| 1631 |
+
# 5: "B-ANSWER", 6: "I-ANSWER",
|
| 1632 |
+
# 7: "B-SECTION_HEADING", 8: "I-SECTION_HEADING",
|
| 1633 |
+
# 9: "B-PASSAGE", 10: "I-PASSAGE"
|
| 1634 |
+
# }
|
| 1635 |
+
# NUM_LABELS = len(ID_TO_LABEL)
|
| 1636 |
+
|
| 1637 |
+
|
| 1638 |
+
# # ============================================================================
|
| 1639 |
+
# # --- PERFORMANCE OPTIMIZATION: OCR CACHE ---
|
| 1640 |
+
# # ============================================================================
|
| 1641 |
+
|
| 1642 |
+
# class OCRCache:
|
| 1643 |
+
# """Caches OCR results per page to avoid redundant Tesseract runs."""
|
| 1644 |
+
|
| 1645 |
+
# def __init__(self):
|
| 1646 |
+
# self.cache = {}
|
| 1647 |
+
|
| 1648 |
+
# def get_key(self, pdf_path: str, page_num: int) -> str:
|
| 1649 |
+
# return f"{pdf_path}:{page_num}"
|
| 1650 |
+
|
| 1651 |
+
# def has_ocr(self, pdf_path: str, page_num: int) -> bool:
|
| 1652 |
+
# return self.get_key(pdf_path, page_num) in self.cache
|
| 1653 |
+
|
| 1654 |
+
# def get_ocr(self, pdf_path: str, page_num: int) -> Optional[list]:
|
| 1655 |
+
# return self.cache.get(self.get_key(pdf_path, page_num))
|
| 1656 |
+
|
| 1657 |
+
# def set_ocr(self, pdf_path: str, page_num: int, ocr_data: list):
|
| 1658 |
+
# self.cache[self.get_key(pdf_path, page_num)] = ocr_data
|
| 1659 |
+
|
| 1660 |
+
# def clear(self):
|
| 1661 |
+
# self.cache.clear()
|
| 1662 |
+
|
| 1663 |
+
|
| 1664 |
+
# # Global OCR cache instance
|
| 1665 |
+
# _ocr_cache = OCRCache()
|
| 1666 |
+
|
| 1667 |
+
|
| 1668 |
+
# # ============================================================================
|
| 1669 |
+
# # --- PHASE 1: YOLO/OCR PREPROCESSING FUNCTIONS ---
|
| 1670 |
+
# # ============================================================================
|
| 1671 |
+
|
| 1672 |
+
# def calculate_iou(box1, box2):
|
| 1673 |
+
# x1_a, y1_a, x2_a, y2_a = box1
|
| 1674 |
+
# x1_b, y1_b, x2_b, y2_b = box2
|
| 1675 |
+
# x_left = max(x1_a, x1_b)
|
| 1676 |
+
# y_top = max(y1_a, y1_b)
|
| 1677 |
+
# x_right = min(x2_a, x2_b)
|
| 1678 |
+
# y_bottom = min(y2_a, y2_b)
|
| 1679 |
+
# intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
|
| 1680 |
+
# box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
|
| 1681 |
+
# box_b_area = (x2_b - x1_b) * (y2_b - y1_b)
|
| 1682 |
+
# union_area = float(box_a_area + box_b_area - intersection_area)
|
| 1683 |
+
# return intersection_area / union_area if union_area > 0 else 0
|
| 1684 |
+
|
| 1685 |
+
|
| 1686 |
+
# def calculate_ioa(box1, box2):
|
| 1687 |
+
# x1_a, y1_a, x2_a, y2_a = box1
|
| 1688 |
+
# x1_b, y1_b, x2_b, y2_b = box2
|
| 1689 |
+
# x_left = max(x1_a, x1_b)
|
| 1690 |
+
# y_top = max(y1_a, y1_b)
|
| 1691 |
+
# x_right = min(x2_a, x2_b)
|
| 1692 |
+
# y_bottom = min(y2_a, y2_b)
|
| 1693 |
+
# intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
|
| 1694 |
+
# box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
|
| 1695 |
+
# return intersection_area / box_a_area if box_a_area > 0 else 0
|
| 1696 |
+
|
| 1697 |
+
|
| 1698 |
+
# def merge_overlapping_boxes(detections, iou_threshold):
|
| 1699 |
+
# if not detections: return []
|
| 1700 |
+
# detections.sort(key=lambda d: d['conf'], reverse=True)
|
| 1701 |
+
# merged_detections = []
|
| 1702 |
+
# is_merged = [False] * len(detections)
|
| 1703 |
+
# for i in range(len(detections)):
|
| 1704 |
+
# if is_merged[i]: continue
|
| 1705 |
+
# current_box = detections[i]['coords']
|
| 1706 |
+
# current_class = detections[i]['class']
|
| 1707 |
+
# merged_x1, merged_y1, merged_x2, merged_y2 = current_box
|
| 1708 |
+
# for j in range(i + 1, len(detections)):
|
| 1709 |
+
# if is_merged[j] or detections[j]['class'] != current_class: continue
|
| 1710 |
+
# other_box = detections[j]['coords']
|
| 1711 |
+
# iou = calculate_iou(current_box, other_box)
|
| 1712 |
+
# if iou > iou_threshold:
|
| 1713 |
+
# merged_x1 = min(merged_x1, other_box[0])
|
| 1714 |
+
# merged_y1 = min(merged_y1, other_box[1])
|
| 1715 |
+
# merged_x2 = max(merged_x2, other_box[2])
|
| 1716 |
+
# merged_y2 = max(merged_y2, other_box[3])
|
| 1717 |
+
# is_merged[j] = True
|
| 1718 |
+
# merged_detections.append({
|
| 1719 |
+
# 'coords': (merged_x1, merged_y1, merged_x2, merged_y2),
|
| 1720 |
+
# 'y1': merged_y1, 'class': current_class, 'conf': detections[i]['conf']
|
| 1721 |
+
# })
|
| 1722 |
+
# return merged_detections
|
| 1723 |
+
|
| 1724 |
+
|
| 1725 |
+
# def merge_yolo_into_word_data(raw_word_data: list, yolo_detections: list, scale_factor: float) -> list:
|
| 1726 |
+
# """
|
| 1727 |
+
# Filters out raw words that are inside YOLO boxes and replaces them with
|
| 1728 |
+
# a single solid 'placeholder' block for the column detector.
|
| 1729 |
+
# """
|
| 1730 |
+
# if not yolo_detections:
|
| 1731 |
+
# return raw_word_data
|
| 1732 |
+
|
| 1733 |
+
# # 1. Convert YOLO boxes (Pixels) to PDF Coordinates (Points)
|
| 1734 |
+
# pdf_space_boxes = []
|
| 1735 |
+
# for det in yolo_detections:
|
| 1736 |
+
# x1, y1, x2, y2 = det['coords']
|
| 1737 |
+
# pdf_box = (
|
| 1738 |
+
# x1 / scale_factor,
|
| 1739 |
+
# y1 / scale_factor,
|
| 1740 |
+
# x2 / scale_factor,
|
| 1741 |
+
# y2 / scale_factor
|
| 1742 |
+
# )
|
| 1743 |
+
# pdf_space_boxes.append(pdf_box)
|
| 1744 |
+
|
| 1745 |
+
# # 2. Filter out raw words that are inside YOLO boxes
|
| 1746 |
+
# cleaned_word_data = []
|
| 1747 |
+
# for word_tuple in raw_word_data:
|
| 1748 |
+
# wx1, wy1, wx2, wy2 = word_tuple[1], word_tuple[2], word_tuple[3], word_tuple[4]
|
| 1749 |
+
# w_center_x = (wx1 + wx2) / 2
|
| 1750 |
+
# w_center_y = (wy1 + wy2) / 2
|
| 1751 |
+
|
| 1752 |
+
# is_inside_yolo = False
|
| 1753 |
+
# for px1, py1, px2, py2 in pdf_space_boxes:
|
| 1754 |
+
# if px1 <= w_center_x <= px2 and py1 <= w_center_y <= py2:
|
| 1755 |
+
# is_inside_yolo = True
|
| 1756 |
+
# break
|
| 1757 |
+
|
| 1758 |
+
# if not is_inside_yolo:
|
| 1759 |
+
# cleaned_word_data.append(word_tuple)
|
| 1760 |
+
|
| 1761 |
+
# # 3. Add the YOLO boxes themselves as "Solid Words"
|
| 1762 |
+
# for i, (px1, py1, px2, py2) in enumerate(pdf_space_boxes):
|
| 1763 |
+
# dummy_entry = (f"BLOCK_{i}", px1, py1, px2, py2)
|
| 1764 |
+
# cleaned_word_data.append(dummy_entry)
|
| 1765 |
+
|
| 1766 |
+
# return cleaned_word_data
|
| 1767 |
+
|
| 1768 |
+
|
| 1769 |
+
# def calculate_vertical_gap_coverage(word_data: list, sep_x: int, page_height: float, gutter_width: int = 10) -> float:
|
| 1770 |
+
# """
|
| 1771 |
+
# Calculates what percentage of the page's vertical text span is 'cleanly split' by the separator.
|
| 1772 |
+
# A valid column split should split > 65% of the page verticality.
|
| 1773 |
+
# """
|
| 1774 |
+
# if not word_data:
|
| 1775 |
+
# return 0.0
|
| 1776 |
+
|
| 1777 |
+
# # Determine the vertical span of the actual text content
|
| 1778 |
+
# y_coords = [w[2] for w in word_data] + [w[4] for w in word_data] # y1 and y2
|
| 1779 |
+
# min_y, max_y = min(y_coords), max(y_coords)
|
| 1780 |
+
# total_text_height = max_y - min_y
|
| 1781 |
+
|
| 1782 |
+
# if total_text_height <= 0:
|
| 1783 |
+
# return 0.0
|
| 1784 |
+
|
| 1785 |
+
# # Create a boolean array representing the Y-axis (1 pixel per unit)
|
| 1786 |
+
# gap_open_mask = np.ones(int(total_text_height) + 1, dtype=bool)
|
| 1787 |
+
|
| 1788 |
+
# zone_left = sep_x - (gutter_width / 2)
|
| 1789 |
+
# zone_right = sep_x + (gutter_width / 2)
|
| 1790 |
+
# offset_y = int(min_y)
|
| 1791 |
+
|
| 1792 |
+
# for _, x1, y1, x2, y2 in word_data:
|
| 1793 |
+
# # Check if this word horizontally interferes with the separator
|
| 1794 |
+
# if x2 > zone_left and x1 < zone_right:
|
| 1795 |
+
# y_start_idx = max(0, int(y1) - offset_y)
|
| 1796 |
+
# y_end_idx = min(len(gap_open_mask), int(y2) - offset_y)
|
| 1797 |
+
# if y_end_idx > y_start_idx:
|
| 1798 |
+
# gap_open_mask[y_start_idx:y_end_idx] = False
|
| 1799 |
+
|
| 1800 |
+
# open_pixels = np.sum(gap_open_mask)
|
| 1801 |
+
# coverage_ratio = open_pixels / len(gap_open_mask)
|
| 1802 |
+
|
| 1803 |
+
# return coverage_ratio
|
| 1804 |
+
|
| 1805 |
+
|
| 1806 |
+
# # def calculate_x_gutters(word_data: list, params: Dict, page_height: float) -> List[int]:
|
| 1807 |
+
# # """Calculates X-axis histogram and validates using BRIDGING CHECK and Vertical Coverage."""
|
| 1808 |
+
# # if not word_data: return []
|
| 1809 |
+
|
| 1810 |
+
# # x_points = []
|
| 1811 |
+
# # for _, x1, _, x2, *rest in word_data:
|
| 1812 |
+
# # x_points.extend([x1, x2])
|
| 1813 |
+
|
| 1814 |
+
# # if not x_points: return []
|
| 1815 |
+
# # max_x = max(x_points)
|
| 1816 |
+
|
| 1817 |
+
# # bin_size = params.get('cluster_bin_size', 5)
|
| 1818 |
+
# # smoothing = params.get('cluster_smoothing', 5)
|
| 1819 |
+
# # min_width = params.get('cluster_min_width', 20)
|
| 1820 |
+
# # threshold_percentile = params.get('cluster_threshold_percentile', 85)
|
| 1821 |
+
|
| 1822 |
+
# # num_bins = int(np.ceil(max_x / bin_size))
|
| 1823 |
+
# # hist, bin_edges = np.histogram(x_points, bins=num_bins, range=(0, max_x))
|
| 1824 |
+
|
| 1825 |
+
# # smoothed_hist = gaussian_filter1d(hist.astype(float), sigma=smoothing)
|
| 1826 |
+
# # inverted_signal = np.max(smoothed_hist) - smoothed_hist
|
| 1827 |
+
|
| 1828 |
+
# # peaks, properties = find_peaks(
|
| 1829 |
+
# # inverted_signal,
|
| 1830 |
+
# # height=np.max(inverted_signal) - np.percentile(smoothed_hist, threshold_percentile),
|
| 1831 |
+
# # distance=min_width / bin_size
|
| 1832 |
+
# # )
|
| 1833 |
+
|
| 1834 |
+
# # if not peaks.size: return []
|
| 1835 |
+
|
| 1836 |
+
# # separator_x_coords = [int(bin_edges[p]) for p in peaks]
|
| 1837 |
+
# # final_separators = []
|
| 1838 |
+
|
| 1839 |
+
# # for x_coord in separator_x_coords:
|
| 1840 |
+
# # # 1. BRIDGING CHECK: The "Do Not Cut Words" Constraint
|
| 1841 |
+
# # # Count how many words/blocks physically cross this specific X coordinate.
|
| 1842 |
+
# # bridging_count = 0
|
| 1843 |
+
# # for _, wx1, _, wx2, _ in word_data:
|
| 1844 |
+
# # # Strictly check if a word physically sits on this line
|
| 1845 |
+
# # if wx1 < x_coord and wx2 > x_coord:
|
| 1846 |
+
# # bridging_count += 1
|
| 1847 |
+
|
| 1848 |
+
# # # Strict Threshold: If more than 2 items (allow for noise) cross, REJECT.
|
| 1849 |
+
# # if bridging_count > 2:
|
| 1850 |
+
# # print(f" ❌ Separator X={x_coord} REJECTED: Cuts through {bridging_count} words/blocks.")
|
| 1851 |
+
# # continue
|
| 1852 |
+
|
| 1853 |
+
# # # 2. VERTICAL COVERAGE CHECK
|
| 1854 |
+
# # # The gap must exist for > 65% of the text height of the page.
|
| 1855 |
+
# # coverage = calculate_vertical_gap_coverage(word_data, x_coord, page_height, gutter_width=min_width)
|
| 1856 |
+
|
| 1857 |
+
# # if coverage >= 0.65:
|
| 1858 |
+
# # final_separators.append(x_coord)
|
| 1859 |
+
# # print(f" -> Separator X={x_coord} ACCEPTED (Coverage: {coverage:.1%}, Bridging: {bridging_count})")
|
| 1860 |
+
# # else:
|
| 1861 |
+
# # print(f" ❌ Separator X={x_coord} REJECTED (Coverage: {coverage:.1%}, Bridging: {bridging_count})")
|
| 1862 |
+
|
| 1863 |
+
# # return sorted(final_separators)
|
| 1864 |
+
|
| 1865 |
+
|
| 1866 |
+
|
| 1867 |
+
|
| 1868 |
+
# def calculate_x_gutters(word_data: list, params: Dict, page_height: float) -> List[int]:
|
| 1869 |
+
# """
|
| 1870 |
+
# Calculates X-axis histogram and validates using BRIDGING DENSITY and Vertical Coverage.
|
| 1871 |
+
# """
|
| 1872 |
+
# if not word_data: return []
|
| 1873 |
+
|
| 1874 |
+
# x_points = []
|
| 1875 |
+
# # Use only word_data elements 1 (x1) and 3 (x2)
|
| 1876 |
+
# for item in word_data:
|
| 1877 |
+
# x_points.extend([item[1], item[3]])
|
| 1878 |
+
|
| 1879 |
+
# if not x_points: return []
|
| 1880 |
+
# max_x = max(x_points)
|
| 1881 |
+
|
| 1882 |
+
# # 1. Determine total text height for ratio calculation
|
| 1883 |
+
# y_coords = [item[2] for item in word_data] + [item[4] for item in word_data]
|
| 1884 |
+
# min_y, max_y = min(y_coords), max(y_coords)
|
| 1885 |
+
# total_text_height = max_y - min_y
|
| 1886 |
+
# if total_text_height <= 0: return []
|
| 1887 |
+
|
| 1888 |
+
# # Histogram Setup
|
| 1889 |
+
# bin_size = params.get('cluster_bin_size', 5)
|
| 1890 |
+
# smoothing = params.get('cluster_smoothing', 5)
|
| 1891 |
+
# min_width = params.get('cluster_min_width', 20)
|
| 1892 |
+
# threshold_percentile = params.get('cluster_threshold_percentile', 85)
|
| 1893 |
+
|
| 1894 |
+
# num_bins = int(np.ceil(max_x / bin_size))
|
| 1895 |
+
# hist, bin_edges = np.histogram(x_points, bins=num_bins, range=(0, max_x))
|
| 1896 |
+
# smoothed_hist = gaussian_filter1d(hist.astype(float), sigma=smoothing)
|
| 1897 |
+
# inverted_signal = np.max(smoothed_hist) - smoothed_hist
|
| 1898 |
+
|
| 1899 |
+
# peaks, properties = find_peaks(
|
| 1900 |
+
# inverted_signal,
|
| 1901 |
+
# height=np.max(inverted_signal) - np.percentile(smoothed_hist, threshold_percentile),
|
| 1902 |
+
# distance=min_width / bin_size
|
| 1903 |
+
# )
|
| 1904 |
+
|
| 1905 |
+
# if not peaks.size: return []
|
| 1906 |
+
# separator_x_coords = [int(bin_edges[p]) for p in peaks]
|
| 1907 |
+
# final_separators = []
|
| 1908 |
+
|
| 1909 |
+
# for x_coord in separator_x_coords:
|
| 1910 |
+
# # --- CHECK 1: BRIDGING DENSITY (The "Cut Through" Check) ---
|
| 1911 |
+
# # Calculate the total vertical height of words that physically cross this line.
|
| 1912 |
+
# bridging_height = 0
|
| 1913 |
+
# bridging_count = 0
|
| 1914 |
+
|
| 1915 |
+
# for item in word_data:
|
| 1916 |
+
# wx1, wy1, wx2, wy2 = item[1], item[2], item[3], item[4]
|
| 1917 |
+
|
| 1918 |
+
# # Check if this word physically sits on top of the separator line
|
| 1919 |
+
# if wx1 < x_coord and wx2 > x_coord:
|
| 1920 |
+
# word_h = wy2 - wy1
|
| 1921 |
+
# bridging_height += word_h
|
| 1922 |
+
# bridging_count += 1
|
| 1923 |
+
|
| 1924 |
+
# # Calculate Ratio: How much of the page's text height is blocked by these crossing words?
|
| 1925 |
+
# bridging_ratio = bridging_height / total_text_height
|
| 1926 |
+
|
| 1927 |
+
# # THRESHOLD: If bridging blocks > 8% of page height, REJECT.
|
| 1928 |
+
# # This allows for page numbers or headers (usually < 5%) to cross, but NOT paragraphs.
|
| 1929 |
+
# if bridging_ratio > 0.08:
|
| 1930 |
+
# print(f" ❌ Separator X={x_coord} REJECTED: Bridging Ratio {bridging_ratio:.1%} (>8%) cuts through text.")
|
| 1931 |
+
# continue
|
| 1932 |
+
|
| 1933 |
+
# # --- CHECK 2: VERTICAL GAP COVERAGE (The "Clean Split" Check) ---
|
| 1934 |
+
# # The gap must exist cleanly for > 65% of the text height.
|
| 1935 |
+
# coverage = calculate_vertical_gap_coverage(word_data, x_coord, page_height, gutter_width=min_width)
|
| 1936 |
+
|
| 1937 |
+
# if coverage >= 0.65:
|
| 1938 |
+
# final_separators.append(x_coord)
|
| 1939 |
+
# print(f" -> Separator X={x_coord} ACCEPTED (Coverage: {coverage:.1%}, Bridging: {bridging_ratio:.1%})")
|
| 1940 |
+
# else:
|
| 1941 |
+
# print(f" ❌ Separator X={x_coord} REJECTED (Coverage: {coverage:.1%}, Bridging: {bridging_ratio:.1%})")
|
| 1942 |
+
|
| 1943 |
+
# return sorted(final_separators)
|
| 1944 |
+
|
| 1945 |
+
|
| 1946 |
+
# def get_word_data_for_detection(page: fitz.Page, pdf_path: str, page_num: int,
|
| 1947 |
+
# top_margin_percent=0.10, bottom_margin_percent=0.10) -> list:
|
| 1948 |
+
# """Extract word data with OCR caching to avoid redundant Tesseract runs."""
|
| 1949 |
+
# word_data = page.get_text("words")
|
| 1950 |
+
|
| 1951 |
+
# if len(word_data) > 0:
|
| 1952 |
+
# word_data = [(w[4], w[0], w[1], w[2], w[3]) for w in word_data]
|
| 1953 |
+
# else:
|
| 1954 |
+
# if _ocr_cache.has_ocr(pdf_path, page_num):
|
| 1955 |
+
# word_data = _ocr_cache.get_ocr(pdf_path, page_num)
|
| 1956 |
+
# else:
|
| 1957 |
+
# try:
|
| 1958 |
+
# pix = page.get_pixmap(matrix=fitz.Matrix(3, 3))
|
| 1959 |
+
# img_bytes = pix.tobytes("png")
|
| 1960 |
+
# img = Image.open(io.BytesIO(img_bytes))
|
| 1961 |
+
# data = pytesseract.image_to_data(img, output_type=pytesseract.Output.DICT)
|
| 1962 |
+
# full_word_data = []
|
| 1963 |
+
# for i in range(len(data['level'])):
|
| 1964 |
+
# if data['text'][i].strip():
|
| 1965 |
+
# x1, y1 = data['left'][i] / 3, data['top'][i] / 3
|
| 1966 |
+
# x2, y2 = x1 + data['width'][i] / 3, y1 + data['height'][i] / 3
|
| 1967 |
+
# full_word_data.append((data['text'][i], x1, y1, x2, y2))
|
| 1968 |
+
# word_data = full_word_data
|
| 1969 |
+
# _ocr_cache.set_ocr(pdf_path, page_num, word_data)
|
| 1970 |
+
# except Exception:
|
| 1971 |
+
# return []
|
| 1972 |
+
|
| 1973 |
+
# # Apply margin filtering
|
| 1974 |
+
# page_height = page.rect.height
|
| 1975 |
+
# y_min = page_height * top_margin_percent
|
| 1976 |
+
# y_max = page_height * (1 - bottom_margin_percent)
|
| 1977 |
+
# return [d for d in word_data if d[2] >= y_min and d[4] <= y_max]
|
| 1978 |
+
|
| 1979 |
+
|
| 1980 |
+
# def pixmap_to_numpy(pix: fitz.Pixmap) -> np.ndarray:
|
| 1981 |
+
# img_data = pix.samples
|
| 1982 |
+
# img = np.frombuffer(img_data, dtype=np.uint8).reshape(pix.height, pix.width, pix.n)
|
| 1983 |
+
# if pix.n == 4: img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
|
| 1984 |
+
# elif pix.n == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
| 1985 |
+
# return img
|
| 1986 |
+
|
| 1987 |
+
|
| 1988 |
+
# def extract_native_words_and_convert(fitz_page, scale_factor: float = 2.0) -> list:
|
| 1989 |
+
# raw_word_data = fitz_page.get_text("words")
|
| 1990 |
+
# converted_ocr_output = []
|
| 1991 |
+
# DEFAULT_CONFIDENCE = 99.0
|
| 1992 |
+
|
| 1993 |
+
# for x1, y1, x2, y2, word, *rest in raw_word_data:
|
| 1994 |
+
# if not word.strip(): continue
|
| 1995 |
+
# x1_pix = int(x1 * scale_factor)
|
| 1996 |
+
# y1_pix = int(y1 * scale_factor)
|
| 1997 |
+
# x2_pix = int(x2 * scale_factor)
|
| 1998 |
+
# y2_pix = int(y2 * scale_factor)
|
| 1999 |
+
# converted_ocr_output.append({
|
| 2000 |
+
# 'type': 'text',
|
| 2001 |
+
# 'word': word,
|
| 2002 |
+
# 'confidence': DEFAULT_CONFIDENCE,
|
| 2003 |
+
# 'bbox': [x1_pix, y1_pix, x2_pix, y2_pix],
|
| 2004 |
+
# 'y0': y1_pix, 'x0': x1_pix
|
| 2005 |
+
# })
|
| 2006 |
+
# return converted_ocr_output
|
| 2007 |
+
|
| 2008 |
+
|
| 2009 |
+
# def preprocess_and_ocr_page(original_img: np.ndarray, model, pdf_path: str,
|
| 2010 |
+
# page_num: int, fitz_page: fitz.Page,
|
| 2011 |
+
# pdf_name: str) -> Tuple[List[Dict[str, Any]], Optional[int]]:
|
| 2012 |
+
# """
|
| 2013 |
+
# OPTIMIZED FLOW:
|
| 2014 |
+
# 1. Run YOLO to find Equations/Tables.
|
| 2015 |
+
# 2. Mask raw text with YOLO boxes.
|
| 2016 |
+
# 3. Run Column Detection on the MASKED data.
|
| 2017 |
+
# 4. Proceed with OCR and Output.
|
| 2018 |
+
# """
|
| 2019 |
+
# global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
|
| 2020 |
+
|
| 2021 |
+
# start_time_total = time.time()
|
| 2022 |
+
|
| 2023 |
+
# if original_img is None:
|
| 2024 |
+
# print(f" ❌ Invalid image for page {page_num}.")
|
| 2025 |
+
# return None, None
|
| 2026 |
+
|
| 2027 |
+
# # ====================================================================
|
| 2028 |
+
# # --- STEP 1: YOLO DETECTION (MOVED TO FIRST STEP) ---
|
| 2029 |
+
# # ====================================================================
|
| 2030 |
+
# start_time_yolo = time.time()
|
| 2031 |
+
# results = model.predict(source=original_img, conf=CONF_THRESHOLD, imgsz=640, verbose=False)
|
| 2032 |
+
|
| 2033 |
+
# relevant_detections = []
|
| 2034 |
+
# if results and results[0].boxes:
|
| 2035 |
+
# for box in results[0].boxes:
|
| 2036 |
+
# class_id = int(box.cls[0])
|
| 2037 |
+
# class_name = model.names[class_id]
|
| 2038 |
+
# if class_name in TARGET_CLASSES:
|
| 2039 |
+
# x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
|
| 2040 |
+
# relevant_detections.append(
|
| 2041 |
+
# {'coords': (x1, y1, x2, y2), 'y1': y1, 'class': class_name, 'conf': float(box.conf[0])}
|
| 2042 |
+
# )
|
| 2043 |
+
|
| 2044 |
+
# merged_detections = merge_overlapping_boxes(relevant_detections, IOU_MERGE_THRESHOLD)
|
| 2045 |
+
# print(f" [LOG] YOLO found {len(merged_detections)} objects in {time.time() - start_time_yolo:.3f}s.")
|
| 2046 |
+
|
| 2047 |
+
# # ====================================================================
|
| 2048 |
+
# # --- STEP 2: PREPARE DATA FOR COLUMN DETECTION (MASKING) ---
|
| 2049 |
+
# # ====================================================================
|
| 2050 |
+
# raw_words_for_layout = get_word_data_for_detection(
|
| 2051 |
+
# fitz_page, pdf_path, page_num,
|
| 2052 |
+
# top_margin_percent=0.10, bottom_margin_percent=0.10
|
| 2053 |
+
# )
|
| 2054 |
+
|
| 2055 |
+
# masked_word_data = merge_yolo_into_word_data(raw_words_for_layout, merged_detections, scale_factor=2.0)
|
| 2056 |
+
|
| 2057 |
+
# # ====================================================================
|
| 2058 |
+
# # --- STEP 3: COLUMN DETECTION (MASKED + COVERAGE + BRIDGING CHECK) ---
|
| 2059 |
+
# # ====================================================================
|
| 2060 |
+
# page_width_pdf = fitz_page.rect.width
|
| 2061 |
+
# page_height_pdf = fitz_page.rect.height
|
| 2062 |
+
|
| 2063 |
+
# column_detection_params = {
|
| 2064 |
+
# 'cluster_bin_size': 5, 'cluster_smoothing': 5,
|
| 2065 |
+
# 'cluster_min_width': 20, 'cluster_threshold_percentile': 85,
|
| 2066 |
+
# }
|
| 2067 |
+
|
| 2068 |
+
# separators = calculate_x_gutters(masked_word_data, column_detection_params, page_height_pdf)
|
| 2069 |
+
|
| 2070 |
+
# page_separator_x = None
|
| 2071 |
+
# if separators:
|
| 2072 |
+
# central_min = page_width_pdf * 0.35
|
| 2073 |
+
# central_max = page_width_pdf * 0.65
|
| 2074 |
+
# central_separators = [s for s in separators if central_min <= s <= central_max]
|
| 2075 |
+
|
| 2076 |
+
# if central_separators:
|
| 2077 |
+
# center_x = page_width_pdf / 2
|
| 2078 |
+
# page_separator_x = min(central_separators, key=lambda x: abs(x - center_x))
|
| 2079 |
+
# print(f" ✅ Column Split Confirmed at X={page_separator_x:.1f}")
|
| 2080 |
+
# else:
|
| 2081 |
+
# print(" ⚠️ Gutter found off-center. Ignoring.")
|
| 2082 |
+
# else:
|
| 2083 |
+
# print(" -> Single Column Layout Confirmed.")
|
| 2084 |
+
|
| 2085 |
+
# # ====================================================================
|
| 2086 |
+
# # --- STEP 4: COMPONENT EXTRACTION (Save Images) ---
|
| 2087 |
+
# # ====================================================================
|
| 2088 |
+
# start_time_components = time.time()
|
| 2089 |
+
# component_metadata = []
|
| 2090 |
+
# fig_count_page = 0
|
| 2091 |
+
# eq_count_page = 0
|
| 2092 |
+
|
| 2093 |
+
# for detection in merged_detections:
|
| 2094 |
+
# x1, y1, x2, y2 = detection['coords']
|
| 2095 |
+
# class_name = detection['class']
|
| 2096 |
+
|
| 2097 |
+
# if class_name == 'figure':
|
| 2098 |
+
# GLOBAL_FIGURE_COUNT += 1
|
| 2099 |
+
# counter = GLOBAL_FIGURE_COUNT
|
| 2100 |
+
# component_word = f"FIGURE{counter}"
|
| 2101 |
+
# fig_count_page += 1
|
| 2102 |
+
# elif class_name == 'equation':
|
| 2103 |
+
# GLOBAL_EQUATION_COUNT += 1
|
| 2104 |
+
# counter = GLOBAL_EQUATION_COUNT
|
| 2105 |
+
# component_word = f"EQUATION{counter}"
|
| 2106 |
+
# eq_count_page += 1
|
| 2107 |
+
# else:
|
| 2108 |
+
# continue
|
| 2109 |
+
|
| 2110 |
+
# component_crop = original_img[y1:y2, x1:x2]
|
| 2111 |
+
# component_filename = f"{pdf_name}_page{page_num}_{class_name}{counter}.png"
|
| 2112 |
+
# cv2.imwrite(os.path.join(FIGURE_EXTRACTION_DIR, component_filename), component_crop)
|
| 2113 |
+
|
| 2114 |
+
# y_midpoint = (y1 + y2) // 2
|
| 2115 |
+
# component_metadata.append({
|
| 2116 |
+
# 'type': class_name, 'word': component_word,
|
| 2117 |
+
# 'bbox': [int(x1), int(y1), int(x2), int(y2)],
|
| 2118 |
+
# 'y0': int(y_midpoint), 'x0': int(x1)
|
| 2119 |
+
# })
|
| 2120 |
+
|
| 2121 |
+
# # ====================================================================
|
| 2122 |
+
# # --- STEP 5: HYBRID OCR (Native Text + Cached Tesseract Fallback) ---
|
| 2123 |
+
# # ====================================================================
|
| 2124 |
+
# raw_ocr_output = []
|
| 2125 |
+
# scale_factor = 2.0
|
| 2126 |
+
|
| 2127 |
+
# try:
|
| 2128 |
+
# raw_ocr_output = extract_native_words_and_convert(fitz_page, scale_factor=scale_factor)
|
| 2129 |
+
# except Exception as e:
|
| 2130 |
+
# print(f" ❌ Native text extraction failed: {e}")
|
| 2131 |
+
|
| 2132 |
+
# if not raw_ocr_output:
|
| 2133 |
+
# if _ocr_cache.has_ocr(pdf_path, page_num):
|
| 2134 |
+
# print(f" ⚡ Using cached Tesseract OCR for page {page_num}")
|
| 2135 |
+
# cached_word_data = _ocr_cache.get_ocr(pdf_path, page_num)
|
| 2136 |
+
# for word_tuple in cached_word_data:
|
| 2137 |
+
# word_text, x1, y1, x2, y2 = word_tuple
|
| 2138 |
+
# x1_pix = int(x1 * scale_factor)
|
| 2139 |
+
# y1_pix = int(y1 * scale_factor)
|
| 2140 |
+
# x2_pix = int(x2 * scale_factor)
|
| 2141 |
+
# y2_pix = int(y2 * scale_factor)
|
| 2142 |
+
# raw_ocr_output.append({
|
| 2143 |
+
# 'type': 'text', 'word': word_text, 'confidence': 95.0,
|
| 2144 |
+
# 'bbox': [x1_pix, y1_pix, x2_pix, y2_pix],
|
| 2145 |
+
# 'y0': y1_pix, 'x0': x1_pix
|
| 2146 |
+
# })
|
| 2147 |
+
# else:
|
| 2148 |
+
# try:
|
| 2149 |
+
# pil_img = Image.fromarray(cv2.cvtColor(original_img, cv2.COLOR_BGR2RGB))
|
| 2150 |
+
# hocr_data = pytesseract.image_to_data(pil_img, output_type=pytesseract.Output.DICT)
|
| 2151 |
+
# for i in range(len(hocr_data['level'])):
|
| 2152 |
+
# text = hocr_data['text'][i].strip()
|
| 2153 |
+
# if text and hocr_data['conf'][i] > -1:
|
| 2154 |
+
# x1 = int(hocr_data['left'][i])
|
| 2155 |
+
# y1 = int(hocr_data['top'][i])
|
| 2156 |
+
# x2 = x1 + int(hocr_data['width'][i])
|
| 2157 |
+
# y2 = y1 + int(hocr_data['height'][i])
|
| 2158 |
+
# raw_ocr_output.append({
|
| 2159 |
+
# 'type': 'text', 'word': text, 'confidence': float(hocr_data['conf'][i]),
|
| 2160 |
+
# 'bbox': [x1, y1, x2, y2], 'y0': y1, 'x0': x1
|
| 2161 |
+
# })
|
| 2162 |
+
# except Exception as e:
|
| 2163 |
+
# print(f" ❌ Tesseract OCR Error: {e}")
|
| 2164 |
+
|
| 2165 |
+
# # ====================================================================
|
| 2166 |
+
# # --- STEP 6: OCR CLEANING AND MERGING ---
|
| 2167 |
+
# # ====================================================================
|
| 2168 |
+
# items_to_sort = []
|
| 2169 |
+
|
| 2170 |
+
# for ocr_word in raw_ocr_output:
|
| 2171 |
+
# is_suppressed = False
|
| 2172 |
+
# for component in component_metadata:
|
| 2173 |
+
# ioa = calculate_ioa(ocr_word['bbox'], component['bbox'])
|
| 2174 |
+
# if ioa > IOA_SUPPRESSION_THRESHOLD:
|
| 2175 |
+
# is_suppressed = True
|
| 2176 |
+
# break
|
| 2177 |
+
# if not is_suppressed:
|
| 2178 |
+
# items_to_sort.append(ocr_word)
|
| 2179 |
+
|
| 2180 |
+
# items_to_sort.extend(component_metadata)
|
| 2181 |
+
|
| 2182 |
+
# # ====================================================================
|
| 2183 |
+
# # --- STEP 7: LINE-BASED SORTING ---
|
| 2184 |
+
# # ====================================================================
|
| 2185 |
+
# items_to_sort.sort(key=lambda x: (x['y0'], x['x0']))
|
| 2186 |
+
# lines = []
|
| 2187 |
+
|
| 2188 |
+
# for item in items_to_sort:
|
| 2189 |
+
# placed = False
|
| 2190 |
+
# for line in lines:
|
| 2191 |
+
# y_ref = min(it['y0'] for it in line)
|
| 2192 |
+
# if abs(y_ref - item['y0']) < LINE_TOLERANCE:
|
| 2193 |
+
# line.append(item)
|
| 2194 |
+
# placed = True
|
| 2195 |
+
# break
|
| 2196 |
+
# if not placed and item['type'] in ['equation', 'figure']:
|
| 2197 |
+
# for line in lines:
|
| 2198 |
+
# y_ref = min(it['y0'] for it in line)
|
| 2199 |
+
# if abs(y_ref - item['y0']) < 20:
|
| 2200 |
+
# line.append(item)
|
| 2201 |
+
# placed = True
|
| 2202 |
+
# break
|
| 2203 |
+
# if not placed:
|
| 2204 |
+
# lines.append([item])
|
| 2205 |
+
|
| 2206 |
+
# for line in lines:
|
| 2207 |
+
# line.sort(key=lambda x: x['x0'])
|
| 2208 |
+
|
| 2209 |
+
# final_output = []
|
| 2210 |
+
# for line in lines:
|
| 2211 |
+
# for item in line:
|
| 2212 |
+
# data_item = {"word": item["word"], "bbox": item["bbox"], "type": item["type"]}
|
| 2213 |
+
# if 'tag' in item: data_item['tag'] = item['tag']
|
| 2214 |
+
# final_output.append(data_item)
|
| 2215 |
+
|
| 2216 |
+
# return final_output, page_separator_x
|
| 2217 |
+
|
| 2218 |
+
|
| 2219 |
+
# def run_single_pdf_preprocessing(pdf_path: str, preprocessed_json_path: str) -> Optional[str]:
|
| 2220 |
+
# global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
|
| 2221 |
+
|
| 2222 |
+
# GLOBAL_FIGURE_COUNT = 0
|
| 2223 |
+
# GLOBAL_EQUATION_COUNT = 0
|
| 2224 |
+
# _ocr_cache.clear()
|
| 2225 |
+
|
| 2226 |
+
# print("\n" + "=" * 80)
|
| 2227 |
+
# print("--- 1. STARTING OPTIMIZED YOLO/OCR PREPROCESSING PIPELINE ---")
|
| 2228 |
+
# print("=" * 80)
|
| 2229 |
+
|
| 2230 |
+
# if not os.path.exists(pdf_path):
|
| 2231 |
+
# print(f"❌ FATAL ERROR: Input PDF not found at {pdf_path}.")
|
| 2232 |
+
# return None
|
| 2233 |
+
|
| 2234 |
+
# os.makedirs(os.path.dirname(preprocessed_json_path), exist_ok=True)
|
| 2235 |
+
# os.makedirs(FIGURE_EXTRACTION_DIR, exist_ok=True)
|
| 2236 |
+
|
| 2237 |
+
# model = YOLO(WEIGHTS_PATH)
|
| 2238 |
+
# pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 2239 |
+
|
| 2240 |
+
# try:
|
| 2241 |
+
# doc = fitz.open(pdf_path)
|
| 2242 |
+
# print(f"✅ Opened PDF: {pdf_name} ({doc.page_count} pages)")
|
| 2243 |
+
# except Exception as e:
|
| 2244 |
+
# print(f"❌ ERROR loading PDF file: {e}")
|
| 2245 |
+
# return None
|
| 2246 |
+
|
| 2247 |
+
# all_pages_data = []
|
| 2248 |
+
# total_pages_processed = 0
|
| 2249 |
+
# mat = fitz.Matrix(2.0, 2.0)
|
| 2250 |
+
|
| 2251 |
+
# print("\n[STEP 1.2: ITERATING PAGES - IN-MEMORY PROCESSING]")
|
| 2252 |
+
|
| 2253 |
+
# for page_num_0_based in range(doc.page_count):
|
| 2254 |
+
# page_num = page_num_0_based + 1
|
| 2255 |
+
# print(f" -> Processing Page {page_num}/{doc.page_count}...")
|
| 2256 |
+
|
| 2257 |
+
# fitz_page = doc.load_page(page_num_0_based)
|
| 2258 |
+
|
| 2259 |
+
# try:
|
| 2260 |
+
# pix = fitz_page.get_pixmap(matrix=mat)
|
| 2261 |
+
# original_img = pixmap_to_numpy(pix)
|
| 2262 |
+
# except Exception as e:
|
| 2263 |
+
# print(f" ❌ Error converting page {page_num} to image: {e}")
|
| 2264 |
+
# continue
|
| 2265 |
+
|
| 2266 |
+
# final_output, page_separator_x = preprocess_and_ocr_page(
|
| 2267 |
+
# original_img,
|
| 2268 |
+
# model,
|
| 2269 |
+
# pdf_path,
|
| 2270 |
+
# page_num,
|
| 2271 |
+
# fitz_page,
|
| 2272 |
+
# pdf_name
|
| 2273 |
+
# )
|
| 2274 |
+
|
| 2275 |
+
# if final_output is not None:
|
| 2276 |
+
# page_data = {
|
| 2277 |
+
# "page_number": page_num,
|
| 2278 |
+
# "data": final_output,
|
| 2279 |
+
# "column_separator_x": page_separator_x
|
| 2280 |
+
# }
|
| 2281 |
+
# all_pages_data.append(page_data)
|
| 2282 |
+
# total_pages_processed += 1
|
| 2283 |
+
# else:
|
| 2284 |
+
# print(f" ❌ Skipped page {page_num} due to processing error.")
|
| 2285 |
+
|
| 2286 |
+
# doc.close()
|
| 2287 |
+
|
| 2288 |
+
# if all_pages_data:
|
| 2289 |
+
# try:
|
| 2290 |
+
# with open(preprocessed_json_path, 'w') as f:
|
| 2291 |
+
# json.dump(all_pages_data, f, indent=4)
|
| 2292 |
+
# print(f"\n ✅ Combined structured OCR JSON saved to: {os.path.basename(preprocessed_json_path)}")
|
| 2293 |
+
# except Exception as e:
|
| 2294 |
+
# print(f"❌ ERROR saving combined JSON output: {e}")
|
| 2295 |
+
# return None
|
| 2296 |
+
# else:
|
| 2297 |
+
# print("❌ WARNING: No page data generated. Halting pipeline.")
|
| 2298 |
+
# return None
|
| 2299 |
+
|
| 2300 |
+
# print("\n" + "=" * 80)
|
| 2301 |
+
# print(f"--- YOLO/OCR PREPROCESSING COMPLETE ({total_pages_processed} pages processed) ---")
|
| 2302 |
+
# print("=" * 80)
|
| 2303 |
+
|
| 2304 |
+
# return preprocessed_json_path
|
| 2305 |
+
|
| 2306 |
+
|
| 2307 |
+
# # ============================================================================
|
| 2308 |
+
# # --- PHASE 2: LAYOUTLMV3 INFERENCE FUNCTIONS ---
|
| 2309 |
+
# # ============================================================================
|
| 2310 |
+
|
| 2311 |
+
# class LayoutLMv3ForTokenClassification(nn.Module):
|
| 2312 |
+
# def __init__(self, num_labels: int = NUM_LABELS):
|
| 2313 |
+
# super().__init__()
|
| 2314 |
+
# self.num_labels = num_labels
|
| 2315 |
+
# config = LayoutLMv3Config.from_pretrained("microsoft/layoutlmv3-base", num_labels=num_labels)
|
| 2316 |
+
# self.layoutlmv3 = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base", config=config)
|
| 2317 |
+
# self.classifier = nn.Linear(config.hidden_size, num_labels)
|
| 2318 |
+
# self.crf = CRF(num_labels)
|
| 2319 |
+
# self.init_weights()
|
| 2320 |
+
|
| 2321 |
+
# def init_weights(self):
|
| 2322 |
+
# nn.init.xavier_uniform_(self.classifier.weight)
|
| 2323 |
+
# if self.classifier.bias is not None: nn.init.zeros_(self.classifier.bias)
|
| 2324 |
+
|
| 2325 |
+
# def forward(self, input_ids: torch.Tensor, bbox: torch.Tensor, attention_mask: torch.Tensor, labels: Optional[torch.Tensor] = None):
|
| 2326 |
+
# outputs = self.layoutlmv3(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, return_dict=True)
|
| 2327 |
+
# sequence_output = outputs.last_hidden_state
|
| 2328 |
+
# emissions = self.classifier(sequence_output)
|
| 2329 |
+
# mask = attention_mask.bool()
|
| 2330 |
+
# if labels is not None:
|
| 2331 |
+
# loss = -self.crf(emissions, labels, mask=mask).mean()
|
| 2332 |
+
# return loss
|
| 2333 |
+
# else:
|
| 2334 |
+
# return self.crf.viterbi_decode(emissions, mask=mask)
|
| 2335 |
+
|
| 2336 |
+
# def _merge_integrity(all_token_data: List[Dict[str, Any]],
|
| 2337 |
+
# column_separator_x: Optional[int]) -> List[List[Dict[str, Any]]]:
|
| 2338 |
+
# """Splits the token data objects into column chunks based on a separator."""
|
| 2339 |
+
# if column_separator_x is None:
|
| 2340 |
+
# print(" -> No column separator. Treating as one chunk.")
|
| 2341 |
+
# return [all_token_data]
|
| 2342 |
+
|
| 2343 |
+
# left_column_tokens, right_column_tokens = [], []
|
| 2344 |
+
# for token_data in all_token_data:
|
| 2345 |
+
# bbox_raw = token_data['bbox_raw_pdf_space']
|
| 2346 |
+
# center_x = (bbox_raw[0] + bbox_raw[2]) / 2
|
| 2347 |
+
# if center_x < column_separator_x:
|
| 2348 |
+
# left_column_tokens.append(token_data)
|
| 2349 |
+
# else:
|
| 2350 |
+
# right_column_tokens.append(token_data)
|
| 2351 |
+
|
| 2352 |
+
# chunks = [c for c in [left_column_tokens, right_column_tokens] if c]
|
| 2353 |
+
# print(f" -> Data split into {len(chunks)} column chunk(s) using separator X={column_separator_x}.")
|
| 2354 |
+
# return chunks
|
| 2355 |
+
|
| 2356 |
+
# def run_inference_and_get_raw_words(pdf_path: str, model_path: str,
|
| 2357 |
+
# preprocessed_json_path: str,
|
| 2358 |
+
# column_detection_params: Optional[Dict] = None) -> List[Dict[str, Any]]:
|
| 2359 |
+
# print("\n" + "=" * 80)
|
| 2360 |
+
# print("--- 2. STARTING LAYOUTLMV3 INFERENCE PIPELINE (Raw Word Output) ---")
|
| 2361 |
+
# print("=" * 80)
|
| 2362 |
+
|
| 2363 |
+
# tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
|
| 2364 |
+
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 2365 |
+
# print(f" -> Using device: {device}")
|
| 2366 |
+
|
| 2367 |
+
# try:
|
| 2368 |
+
# model = LayoutLMv3ForTokenClassification(num_labels=NUM_LABELS)
|
| 2369 |
+
# checkpoint = torch.load(model_path, map_location=device)
|
| 2370 |
+
# model_state = checkpoint.get('model_state_dict', checkpoint)
|
| 2371 |
+
# fixed_state_dict = {key.replace('layoutlm.', 'layoutlmv3.'): value for key, value in model_state.items()}
|
| 2372 |
+
# model.load_state_dict(fixed_state_dict)
|
| 2373 |
+
# model.to(device)
|
| 2374 |
+
# model.eval()
|
| 2375 |
+
# print(f"✅ LayoutLMv3 Model loaded successfully from {os.path.basename(model_path)}.")
|
| 2376 |
+
# except Exception as e:
|
| 2377 |
+
# print(f"❌ FATAL ERROR during LayoutLMv3 model loading: {e}")
|
| 2378 |
+
# return []
|
| 2379 |
+
|
| 2380 |
+
# try:
|
| 2381 |
+
# with open(preprocessed_json_path, 'r', encoding='utf-8') as f:
|
| 2382 |
+
# preprocessed_data = json.load(f)
|
| 2383 |
+
# print(f"✅ Loaded preprocessed data with {len(preprocessed_data)} pages.")
|
| 2384 |
+
# except Exception:
|
| 2385 |
+
# print("❌ Error loading preprocessed JSON.")
|
| 2386 |
+
# return []
|
| 2387 |
+
|
| 2388 |
+
# try:
|
| 2389 |
+
# doc = fitz.open(pdf_path)
|
| 2390 |
+
# except Exception:
|
| 2391 |
+
# print("❌ Error loading PDF.")
|
| 2392 |
+
# return []
|
| 2393 |
+
|
| 2394 |
+
# final_page_predictions = []
|
| 2395 |
+
# CHUNK_SIZE = 500
|
| 2396 |
+
|
| 2397 |
+
# for page_data in preprocessed_data:
|
| 2398 |
+
# page_num_1_based = page_data['page_number']
|
| 2399 |
+
# page_num_0_based = page_num_1_based - 1
|
| 2400 |
+
# page_raw_predictions = []
|
| 2401 |
+
# print(f"\n *** Processing Page {page_num_1_based} ({len(page_data['data'])} raw tokens) ***")
|
| 2402 |
+
|
| 2403 |
+
# fitz_page = doc.load_page(page_num_0_based)
|
| 2404 |
+
# page_width, page_height = fitz_page.rect.width, fitz_page.rect.height
|
| 2405 |
+
# print(f" -> Page dimensions: {page_width:.0f}x{page_height:.0f} (PDF points).")
|
| 2406 |
+
|
| 2407 |
+
# all_token_data = []
|
| 2408 |
+
# scale_factor = 2.0
|
| 2409 |
+
|
| 2410 |
+
# for item in page_data['data']:
|
| 2411 |
+
# raw_yolo_bbox = item['bbox']
|
| 2412 |
+
# bbox_pdf = [
|
| 2413 |
+
# int(raw_yolo_bbox[0] / scale_factor), int(raw_yolo_bbox[1] / scale_factor),
|
| 2414 |
+
# int(raw_yolo_bbox[2] / scale_factor), int(raw_yolo_bbox[3] / scale_factor)
|
| 2415 |
+
# ]
|
| 2416 |
+
# normalized_bbox = [
|
| 2417 |
+
# max(0, min(1000, int(1000 * bbox_pdf[0] / page_width))),
|
| 2418 |
+
# max(0, min(1000, int(1000 * bbox_pdf[1] / page_height))),
|
| 2419 |
+
# max(0, min(1000, int(1000 * bbox_pdf[2] / page_width))),
|
| 2420 |
+
# max(0, min(1000, int(1000 * bbox_pdf[3] / page_height)))
|
| 2421 |
+
# ]
|
| 2422 |
+
# all_token_data.append({
|
| 2423 |
+
# "word": item['word'],
|
| 2424 |
+
# "bbox_raw_pdf_space": bbox_pdf,
|
| 2425 |
+
# "bbox_normalized": normalized_bbox,
|
| 2426 |
+
# "item_original_data": item
|
| 2427 |
+
# })
|
| 2428 |
+
|
| 2429 |
+
# if not all_token_data: continue
|
| 2430 |
+
|
| 2431 |
+
# column_separator_x = page_data.get('column_separator_x', None)
|
| 2432 |
+
# if column_separator_x is not None:
|
| 2433 |
+
# print(f" -> Using SAVED column separator: X={column_separator_x}")
|
| 2434 |
+
# else:
|
| 2435 |
+
# print(" -> No column separator found. Assuming single chunk.")
|
| 2436 |
+
|
| 2437 |
+
# token_chunks = _merge_integrity(all_token_data, column_separator_x)
|
| 2438 |
+
# total_chunks = len(token_chunks)
|
| 2439 |
+
|
| 2440 |
+
# for chunk_idx, chunk_tokens in enumerate(token_chunks):
|
| 2441 |
+
# if not chunk_tokens: continue
|
| 2442 |
+
|
| 2443 |
+
# chunk_words = [t['word'] for t in chunk_tokens]
|
| 2444 |
+
# chunk_normalized_bboxes = [t['bbox_normalized'] for t in chunk_tokens]
|
| 2445 |
+
|
| 2446 |
+
# total_sub_chunks = (len(chunk_words) + CHUNK_SIZE - 1) // CHUNK_SIZE
|
| 2447 |
+
# for i in range(0, len(chunk_words), CHUNK_SIZE):
|
| 2448 |
+
# sub_chunk_idx = i // CHUNK_SIZE + 1
|
| 2449 |
+
# sub_words = chunk_words[i:i + CHUNK_SIZE]
|
| 2450 |
+
# sub_bboxes = chunk_normalized_bboxes[i:i + CHUNK_SIZE]
|
| 2451 |
+
# sub_tokens_data = chunk_tokens[i:i + CHUNK_SIZE]
|
| 2452 |
+
|
| 2453 |
+
# print(f" -> Chunk {chunk_idx + 1}/{total_chunks}, Sub-chunk {sub_chunk_idx}/{total_sub_chunks}: {len(sub_words)} words. Running Inference...")
|
| 2454 |
+
|
| 2455 |
+
# encoded_input = tokenizer(
|
| 2456 |
+
# sub_words, boxes=sub_bboxes, truncation=True, padding="max_length",
|
| 2457 |
+
# max_length=512, return_tensors="pt"
|
| 2458 |
+
# )
|
| 2459 |
+
# input_ids = encoded_input['input_ids'].to(device)
|
| 2460 |
+
# bbox = encoded_input['bbox'].to(device)
|
| 2461 |
+
# attention_mask = encoded_input['attention_mask'].to(device)
|
| 2462 |
+
|
| 2463 |
+
# with torch.no_grad():
|
| 2464 |
+
# predictions_int_list = model(input_ids, bbox, attention_mask)
|
| 2465 |
+
|
| 2466 |
+
# if not predictions_int_list: continue
|
| 2467 |
+
# predictions_int = predictions_int_list[0]
|
| 2468 |
+
# word_ids = encoded_input.word_ids()
|
| 2469 |
+
# word_idx_to_pred_id = {}
|
| 2470 |
+
|
| 2471 |
+
# for token_idx, word_idx in enumerate(word_ids):
|
| 2472 |
+
# if word_idx is not None and word_idx < len(sub_words):
|
| 2473 |
+
# if word_idx not in word_idx_to_pred_id:
|
| 2474 |
+
# word_idx_to_pred_id[word_idx] = predictions_int[token_idx]
|
| 2475 |
+
|
| 2476 |
+
# for current_word_idx in range(len(sub_words)):
|
| 2477 |
+
# pred_id_or_tensor = word_idx_to_pred_id.get(current_word_idx, 0)
|
| 2478 |
+
# pred_id = pred_id_or_tensor.item() if torch.is_tensor(pred_id_or_tensor) else pred_id_or_tensor
|
| 2479 |
+
# predicted_label = ID_TO_LABEL[pred_id]
|
| 2480 |
+
# original_token = sub_tokens_data[current_word_idx]
|
| 2481 |
+
# page_raw_predictions.append({
|
| 2482 |
+
# "word": original_token['word'],
|
| 2483 |
+
# "bbox": original_token['bbox_raw_pdf_space'],
|
| 2484 |
+
# "predicted_label": predicted_label,
|
| 2485 |
+
# "page_number": page_num_1_based
|
| 2486 |
+
# })
|
| 2487 |
+
|
| 2488 |
+
# if page_raw_predictions:
|
| 2489 |
+
# final_page_predictions.append({
|
| 2490 |
+
# "page_number": page_num_1_based,
|
| 2491 |
+
# "data": page_raw_predictions
|
| 2492 |
+
# })
|
| 2493 |
+
# print(f" *** Page {page_num_1_based} Finalized: {len(page_raw_predictions)} labeled words. ***")
|
| 2494 |
+
|
| 2495 |
+
# doc.close()
|
| 2496 |
+
# print("\n" + "=" * 80)
|
| 2497 |
+
# print("--- LAYOUTLMV3 INFERENCE COMPLETE ---")
|
| 2498 |
+
# print("=" * 80)
|
| 2499 |
+
# return final_page_predictions
|
| 2500 |
+
|
| 2501 |
+
|
| 2502 |
+
# def create_label_studio_span(page_results, start_idx, end_idx, label):
|
| 2503 |
+
# entity_words = [page_results[i]['word'] for i in range(start_idx, end_idx + 1)]
|
| 2504 |
+
# entity_bboxes = [page_results[i]['bbox'] for i in range(start_idx, end_idx + 1)]
|
| 2505 |
+
# x0 = min(bbox[0] for bbox in entity_bboxes)
|
| 2506 |
+
# y0 = min(bbox[1] for bbox in entity_bboxes)
|
| 2507 |
+
# x1 = max(bbox[2] for bbox in entity_bboxes)
|
| 2508 |
+
# y1 = max(bbox[3] for bbox in entity_bboxes)
|
| 2509 |
+
# all_words_on_page = [r['word'] for r in page_results]
|
| 2510 |
+
# start_char = len(" ".join(all_words_on_page[:start_idx]))
|
| 2511 |
+
# if start_idx != 0: start_char += 1
|
| 2512 |
+
# end_char = start_char + len(" ".join(entity_words))
|
| 2513 |
+
# span_text = " ".join(entity_words)
|
| 2514 |
+
# return {
|
| 2515 |
+
# "from_name": "label", "to_name": "text", "type": "labels",
|
| 2516 |
+
# "value": {
|
| 2517 |
+
# "start": start_char, "end": end_char, "text": span_text,
|
| 2518 |
+
# "labels": [label],
|
| 2519 |
+
# "bbox": {"x": x0, "y": y0, "width": x1 - x0, "height": y1 - y0}
|
| 2520 |
+
# }, "score": 0.99
|
| 2521 |
+
# }
|
| 2522 |
+
|
| 2523 |
+
# def convert_raw_predictions_to_label_studio(page_data_list, output_path: str):
|
| 2524 |
+
# final_tasks = []
|
| 2525 |
+
# print("\n[PHASE: LABEL STUDIO CONVERSION]")
|
| 2526 |
+
# for page_data in page_data_list:
|
| 2527 |
+
# page_num = page_data['page_number']
|
| 2528 |
+
# page_results = page_data['data']
|
| 2529 |
+
# if not page_results: continue
|
| 2530 |
+
# original_words = [r['word'] for r in page_results]
|
| 2531 |
+
# text_string = " ".join(original_words)
|
| 2532 |
+
# results = []
|
| 2533 |
+
# current_entity_label = None
|
| 2534 |
+
# current_entity_start_word_index = None
|
| 2535 |
+
|
| 2536 |
+
# for i, pred_item in enumerate(page_results):
|
| 2537 |
+
# label = pred_item['predicted_label']
|
| 2538 |
+
# tag_only = label.split('-', 1)[-1] if '-' in label else label
|
| 2539 |
+
# if label.startswith('B-'):
|
| 2540 |
+
# if current_entity_label:
|
| 2541 |
+
# results.append(create_label_studio_span(page_results, current_entity_start_word_index, i - 1, current_entity_label))
|
| 2542 |
+
# current_entity_label = tag_only
|
| 2543 |
+
# current_entity_start_word_index = i
|
| 2544 |
+
# elif label.startswith('I-') and current_entity_label == tag_only:
|
| 2545 |
+
# continue
|
| 2546 |
+
# else:
|
| 2547 |
+
# if current_entity_label:
|
| 2548 |
+
# results.append(create_label_studio_span(page_results, current_entity_start_word_index, i - 1, current_entity_label))
|
| 2549 |
+
# current_entity_label = None
|
| 2550 |
+
# current_entity_start_word_index = None
|
| 2551 |
+
# if current_entity_label:
|
| 2552 |
+
# results.append(create_label_studio_span(page_results, current_entity_start_word_index, len(page_results) - 1, current_entity_label))
|
| 2553 |
+
|
| 2554 |
+
# final_tasks.append({
|
| 2555 |
+
# "data": {
|
| 2556 |
+
# "text": text_string, "original_words": original_words,
|
| 2557 |
+
# "original_bboxes": [r['bbox'] for r in page_results]
|
| 2558 |
+
# },
|
| 2559 |
+
# "annotations": [{"result": results}],
|
| 2560 |
+
# "meta": {"page_number": page_num}
|
| 2561 |
+
# })
|
| 2562 |
+
# with open(output_path, "w", encoding='utf-8') as f:
|
| 2563 |
+
# json.dump(final_tasks, f, indent=2, ensure_ascii=False)
|
| 2564 |
+
# print(f"\n✅ Label Studio tasks saved to {output_path}.")
|
| 2565 |
+
|
| 2566 |
+
|
| 2567 |
+
# # ============================================================================
|
| 2568 |
+
# # --- PHASE 3: BIO TO STRUCTURED JSON DECODER ---
|
| 2569 |
+
# # ============================================================================
|
| 2570 |
+
|
| 2571 |
+
# def convert_bio_to_structured_json_relaxed(input_path: str, output_path: str) -> Optional[List[Dict[str, Any]]]:
|
| 2572 |
+
# print("\n" + "=" * 80)
|
| 2573 |
+
# print("--- 3. STARTING BIO TO STRUCTURED JSON DECODING ---")
|
| 2574 |
+
# print("=" * 80)
|
| 2575 |
+
# try:
|
| 2576 |
+
# with open(input_path, 'r', encoding='utf-8') as f:
|
| 2577 |
+
# predictions_by_page = json.load(f)
|
| 2578 |
+
# except Exception as e:
|
| 2579 |
+
# print(f"❌ Error loading raw prediction file: {e}")
|
| 2580 |
+
# return None
|
| 2581 |
+
|
| 2582 |
+
# predictions = []
|
| 2583 |
+
# for page_item in predictions_by_page:
|
| 2584 |
+
# if isinstance(page_item, dict) and 'data' in page_item:
|
| 2585 |
+
# predictions.extend(page_item['data'])
|
| 2586 |
+
|
| 2587 |
+
# structured_data = []
|
| 2588 |
+
# current_item = None
|
| 2589 |
+
# current_option_key = None
|
| 2590 |
+
# current_passage_buffer = []
|
| 2591 |
+
# current_text_buffer = []
|
| 2592 |
+
# first_question_started = False
|
| 2593 |
+
# last_entity_type = None
|
| 2594 |
+
# just_finished_i_option = False
|
| 2595 |
+
# is_in_new_passage = False
|
| 2596 |
+
|
| 2597 |
+
# def finalize_passage_to_item(item, passage_buffer):
|
| 2598 |
+
# if passage_buffer:
|
| 2599 |
+
# passage_text = re.sub(r'\s{2,}', ' ', ' '.join(passage_buffer)).strip()
|
| 2600 |
+
# if item.get('passage'): item['passage'] += ' ' + passage_text
|
| 2601 |
+
# else: item['passage'] = passage_text
|
| 2602 |
+
# passage_buffer.clear()
|
| 2603 |
+
|
| 2604 |
+
# for item in predictions:
|
| 2605 |
+
# word = item['word']
|
| 2606 |
+
# label = item['predicted_label']
|
| 2607 |
+
# entity_type = label[2:].strip() if label.startswith(('B-', 'I-')) else None
|
| 2608 |
+
# current_text_buffer.append(word)
|
| 2609 |
+
# previous_entity_type = last_entity_type
|
| 2610 |
+
# is_passage_label = (entity_type == 'PASSAGE')
|
| 2611 |
+
|
| 2612 |
+
# if not first_question_started:
|
| 2613 |
+
# if label != 'B-QUESTION' and not is_passage_label:
|
| 2614 |
+
# just_finished_i_option = False
|
| 2615 |
+
# is_in_new_passage = False
|
| 2616 |
+
# continue
|
| 2617 |
+
# if is_passage_label:
|
| 2618 |
+
# current_passage_buffer.append(word)
|
| 2619 |
+
# last_entity_type = 'PASSAGE'
|
| 2620 |
+
# just_finished_i_option = False
|
| 2621 |
+
# is_in_new_passage = False
|
| 2622 |
+
# continue
|
| 2623 |
+
|
| 2624 |
+
# if label == 'B-QUESTION':
|
| 2625 |
+
# if not first_question_started:
|
| 2626 |
+
# header_text = ' '.join(current_text_buffer[:-1]).strip()
|
| 2627 |
+
# if header_text or current_passage_buffer:
|
| 2628 |
+
# metadata_item = {'type': 'METADATA', 'passage': ''}
|
| 2629 |
+
# finalize_passage_to_item(metadata_item, current_passage_buffer)
|
| 2630 |
+
# if header_text: metadata_item['text'] = header_text
|
| 2631 |
+
# structured_data.append(metadata_item)
|
| 2632 |
+
# first_question_started = True
|
| 2633 |
+
# current_text_buffer = [word]
|
| 2634 |
+
|
| 2635 |
+
# if current_item is not None:
|
| 2636 |
+
# finalize_passage_to_item(current_item, current_passage_buffer)
|
| 2637 |
+
# current_item['text'] = ' '.join(current_text_buffer[:-1]).strip()
|
| 2638 |
+
# structured_data.append(current_item)
|
| 2639 |
+
# current_text_buffer = [word]
|
| 2640 |
+
|
| 2641 |
+
# current_item = {
|
| 2642 |
+
# 'question': word, 'options': {}, 'answer': '', 'passage': '', 'text': ''
|
| 2643 |
+
# }
|
| 2644 |
+
# current_option_key = None
|
| 2645 |
+
# last_entity_type = 'QUESTION'
|
| 2646 |
+
# just_finished_i_option = False
|
| 2647 |
+
# is_in_new_passage = False
|
| 2648 |
+
# continue
|
| 2649 |
+
|
| 2650 |
+
# if current_item is not None:
|
| 2651 |
+
# if is_in_new_passage:
|
| 2652 |
+
# current_item['new_passage'] += f' {word}'
|
| 2653 |
+
# if label.startswith('B-') or (label.startswith('I-') and entity_type != 'PASSAGE'):
|
| 2654 |
+
# is_in_new_passage = False
|
| 2655 |
+
# if label.startswith(('B-', 'I-')): last_entity_type = entity_type
|
| 2656 |
+
# continue
|
| 2657 |
+
# is_in_new_passage = False
|
| 2658 |
+
|
| 2659 |
+
# if label.startswith('B-'):
|
| 2660 |
+
# if entity_type in ['QUESTION', 'OPTION', 'ANSWER', 'SECTION_HEADING']:
|
| 2661 |
+
# finalize_passage_to_item(current_item, current_passage_buffer)
|
| 2662 |
+
# current_passage_buffer = []
|
| 2663 |
+
# last_entity_type = entity_type
|
| 2664 |
+
# if entity_type == 'PASSAGE':
|
| 2665 |
+
# if previous_entity_type == 'OPTION' and just_finished_i_option:
|
| 2666 |
+
# current_item['new_passage'] = word
|
| 2667 |
+
# is_in_new_passage = True
|
| 2668 |
+
# else:
|
| 2669 |
+
# current_passage_buffer.append(word)
|
| 2670 |
+
# elif entity_type == 'OPTION':
|
| 2671 |
+
# current_option_key = word
|
| 2672 |
+
# current_item['options'][current_option_key] = word
|
| 2673 |
+
# just_finished_i_option = False
|
| 2674 |
+
# elif entity_type == 'ANSWER':
|
| 2675 |
+
# current_item['answer'] = word
|
| 2676 |
+
# current_option_key = None
|
| 2677 |
+
# just_finished_i_option = False
|
| 2678 |
+
# elif entity_type == 'QUESTION':
|
| 2679 |
+
# current_item['question'] += f' {word}'
|
| 2680 |
+
# just_finished_i_option = False
|
| 2681 |
+
|
| 2682 |
+
# elif label.startswith('I-'):
|
| 2683 |
+
# if entity_type == 'QUESTION':
|
| 2684 |
+
# current_item['question'] += f' {word}'
|
| 2685 |
+
# elif entity_type == 'PASSAGE':
|
| 2686 |
+
# if previous_entity_type == 'OPTION' and just_finished_i_option:
|
| 2687 |
+
# current_item['new_passage'] = word
|
| 2688 |
+
# is_in_new_passage = True
|
| 2689 |
+
# else:
|
| 2690 |
+
# if not current_passage_buffer: last_entity_type = 'PASSAGE'
|
| 2691 |
+
# current_passage_buffer.append(word)
|
| 2692 |
+
# elif entity_type == 'OPTION' and current_option_key is not None:
|
| 2693 |
+
# current_item['options'][current_option_key] += f' {word}'
|
| 2694 |
+
# just_finished_i_option = True
|
| 2695 |
+
# elif entity_type == 'ANSWER':
|
| 2696 |
+
# current_item['answer'] += f' {word}'
|
| 2697 |
+
# just_finished_i_option = (entity_type == 'OPTION')
|
| 2698 |
+
|
| 2699 |
+
# elif label == 'O':
|
| 2700 |
+
# if last_entity_type == 'QUESTION':
|
| 2701 |
+
# current_item['question'] += f' {word}'
|
| 2702 |
+
# just_finished_i_option = False
|
| 2703 |
+
|
| 2704 |
+
# if current_item is not None:
|
| 2705 |
+
# finalize_passage_to_item(current_item, current_passage_buffer)
|
| 2706 |
+
# current_item['text'] = ' '.join(current_text_buffer).strip()
|
| 2707 |
+
# structured_data.append(current_item)
|
| 2708 |
+
|
| 2709 |
+
# for item in structured_data:
|
| 2710 |
+
# item['text'] = re.sub(r'\s{2,}', ' ', item['text']).strip()
|
| 2711 |
+
# if 'new_passage' in item:
|
| 2712 |
+
# item['new_passage'] = re.sub(r'\s{2,}', ' ', item['new_passage']).strip()
|
| 2713 |
+
|
| 2714 |
+
# try:
|
| 2715 |
+
# with open(output_path, 'w', encoding='utf-8') as f:
|
| 2716 |
+
# json.dump(structured_data, f, indent=2, ensure_ascii=False)
|
| 2717 |
+
# except Exception: pass
|
| 2718 |
+
|
| 2719 |
+
# return structured_data
|
| 2720 |
+
|
| 2721 |
+
# def correct_misaligned_options(structured_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
|
| 2722 |
+
# print("\n" + "=" * 80)
|
| 2723 |
+
# print("--- 5. STARTING POST-PROCESSING: OPTION ALIGNMENT CORRECTION ---")
|
| 2724 |
+
# print("=" * 80)
|
| 2725 |
+
# tag_pattern = re.compile(r'(EQUATION\d+|FIGURE\d+)')
|
| 2726 |
+
# corrected_count = 0
|
| 2727 |
+
# for item in structured_data:
|
| 2728 |
+
# if item.get('type') in ['METADATA']: continue
|
| 2729 |
+
# options = item.get('options')
|
| 2730 |
+
# if not options or len(options) < 2: continue
|
| 2731 |
+
# option_keys = list(options.keys())
|
| 2732 |
+
# for i in range(len(option_keys) - 1):
|
| 2733 |
+
# current_key = option_keys[i]
|
| 2734 |
+
# next_key = option_keys[i + 1]
|
| 2735 |
+
# current_value = options[current_key].strip()
|
| 2736 |
+
# next_value = options[next_key].strip()
|
| 2737 |
+
# is_current_empty = current_value == current_key
|
| 2738 |
+
# content_in_next = next_value.replace(next_key, '', 1).strip()
|
| 2739 |
+
# tags_in_next = tag_pattern.findall(content_in_next)
|
| 2740 |
+
# has_two_tags = len(tags_in_next) == 2
|
| 2741 |
+
# if is_current_empty and has_two_tags:
|
| 2742 |
+
# tag_to_move = tags_in_next[0]
|
| 2743 |
+
# options[current_key] = f"{current_key} {tag_to_move}".strip()
|
| 2744 |
+
# options[next_key] = f"{next_key} {tags_in_next[1]}".strip()
|
| 2745 |
+
# corrected_count += 1
|
| 2746 |
+
# print(f"✅ Option alignment correction finished. Total corrections: {corrected_count}.")
|
| 2747 |
+
# return structured_data
|
| 2748 |
+
|
| 2749 |
+
# # ============================================================================
|
| 2750 |
+
# # --- PHASE 4: IMAGE EMBEDDING (Base64) ---
|
| 2751 |
+
# # ============================================================================
|
| 2752 |
+
|
| 2753 |
+
# def get_base64_for_file(filepath: str) -> str:
|
| 2754 |
+
# try:
|
| 2755 |
+
# with open(filepath, 'rb') as f:
|
| 2756 |
+
# return base64.b64encode(f.read()).decode('utf-8')
|
| 2757 |
+
# except Exception as e:
|
| 2758 |
+
# print(f" ❌ Error encoding file {filepath}: {e}")
|
| 2759 |
+
# return ""
|
| 2760 |
+
|
| 2761 |
+
# def embed_images_as_base64_in_memory(structured_data: List[Dict[str, Any]], figure_extraction_dir: str) -> List[Dict[str, Any]]:
|
| 2762 |
+
# print("\n" + "=" * 80)
|
| 2763 |
+
# print("--- 4. STARTING IMAGE EMBEDDING (Base64) ---")
|
| 2764 |
+
# print("=" * 80)
|
| 2765 |
+
# if not structured_data: return []
|
| 2766 |
+
# image_files = glob.glob(os.path.join(figure_extraction_dir, "*.png"))
|
| 2767 |
+
# image_lookup = {}
|
| 2768 |
+
# tag_regex = re.compile(r'(figure|equation)(\d+)', re.IGNORECASE)
|
| 2769 |
+
# for filepath in image_files:
|
| 2770 |
+
# filename = os.path.basename(filepath)
|
| 2771 |
+
# match = re.search(r'_(figure|equation)(\d+)\.png$', filename, re.IGNORECASE)
|
| 2772 |
+
# if match:
|
| 2773 |
+
# key = f"{match.group(1).upper()}{match.group(2)}"
|
| 2774 |
+
# image_lookup[key] = filepath
|
| 2775 |
+
# print(f" -> Found {len(image_lookup)} image components.")
|
| 2776 |
+
# final_structured_data = []
|
| 2777 |
+
# for item in structured_data:
|
| 2778 |
+
# text_fields = [item.get('question', ''), item.get('passage', '')]
|
| 2779 |
+
# if 'options' in item:
|
| 2780 |
+
# for opt_val in item['options'].values(): text_fields.append(opt_val)
|
| 2781 |
+
# if 'new_passage' in item: text_fields.append(item['new_passage'])
|
| 2782 |
+
# unique_tags_to_embed = set()
|
| 2783 |
+
# for text in text_fields:
|
| 2784 |
+
# if not text: continue
|
| 2785 |
+
# for match in tag_regex.finditer(text):
|
| 2786 |
+
# tag = match.group(0).upper()
|
| 2787 |
+
# if tag in image_lookup: unique_tags_to_embed.add(tag)
|
| 2788 |
+
# for tag in sorted(list(unique_tags_to_embed)):
|
| 2789 |
+
# filepath = image_lookup[tag]
|
| 2790 |
+
# base64_code = get_base64_for_file(filepath)
|
| 2791 |
+
# base_key = tag.replace(' ', '').lower()
|
| 2792 |
+
# item[base_key] = base64_code
|
| 2793 |
+
# final_structured_data.append(item)
|
| 2794 |
+
# print(f"✅ Image embedding complete.")
|
| 2795 |
+
# return final_structured_data
|
| 2796 |
+
|
| 2797 |
+
# # ============================================================================
|
| 2798 |
+
# # --- MAIN FUNCTION ---
|
| 2799 |
+
# # ============================================================================
|
| 2800 |
+
|
| 2801 |
+
# def run_document_pipeline(input_pdf_path: str, layoutlmv3_model_path: str, label_studio_output_path: str) -> Optional[List[Dict[str, Any]]]:
|
| 2802 |
+
# if not os.path.exists(input_pdf_path): return None
|
| 2803 |
+
|
| 2804 |
+
# print("\n" + "#" * 80)
|
| 2805 |
+
# print("### STARTING OPTIMIZED FULL DOCUMENT ANALYSIS PIPELINE ###")
|
| 2806 |
+
# print("#" * 80)
|
| 2807 |
+
|
| 2808 |
+
# pdf_name = os.path.splitext(os.path.basename(input_pdf_path))[0]
|
| 2809 |
+
# temp_pipeline_dir = os.path.join(tempfile.gettempdir(), f"pipeline_run_{pdf_name}_{os.getpid()}")
|
| 2810 |
+
# os.makedirs(temp_pipeline_dir, exist_ok=True)
|
| 2811 |
+
|
| 2812 |
+
# preprocessed_json_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_preprocessed.json")
|
| 2813 |
+
# raw_output_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_raw_predictions.json")
|
| 2814 |
+
# structured_intermediate_output_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_structured_intermediate.json")
|
| 2815 |
+
|
| 2816 |
+
# final_result = None
|
| 2817 |
+
# try:
|
| 2818 |
+
# # Phase 1: Preprocessing with YOLO First + Masking
|
| 2819 |
+
# preprocessed_json_path_out = run_single_pdf_preprocessing(input_pdf_path, preprocessed_json_path)
|
| 2820 |
+
# if not preprocessed_json_path_out: return None
|
| 2821 |
+
|
| 2822 |
+
# # Phase 2: Inference
|
| 2823 |
+
# page_raw_predictions_list = run_inference_and_get_raw_words(
|
| 2824 |
+
# input_pdf_path, layoutlmv3_model_path, preprocessed_json_path_out
|
| 2825 |
+
# )
|
| 2826 |
+
# if not page_raw_predictions_list: return None
|
| 2827 |
+
|
| 2828 |
+
# with open(raw_output_path, 'w', encoding='utf-8') as f:
|
| 2829 |
+
# json.dump(page_raw_predictions_list, f, indent=4)
|
| 2830 |
+
|
| 2831 |
+
# # Phase 3: Decoding
|
| 2832 |
+
# structured_data_list = convert_bio_to_structured_json_relaxed(
|
| 2833 |
+
# raw_output_path, structured_intermediate_output_path
|
| 2834 |
+
# )
|
| 2835 |
+
# if not structured_data_list: return None
|
| 2836 |
+
# structured_data_list = correct_misaligned_options(structured_data_list)
|
| 2837 |
+
|
| 2838 |
+
# try:
|
| 2839 |
+
# convert_raw_predictions_to_label_studio(page_raw_predictions_list, label_studio_output_path)
|
| 2840 |
+
# except Exception as e:
|
| 2841 |
+
# print(f"❌ Error during Label Studio conversion: {e}")
|
| 2842 |
+
|
| 2843 |
+
# # Phase 4: Embedding
|
| 2844 |
+
# final_result = embed_images_as_base64_in_memory(structured_data_list, FIGURE_EXTRACTION_DIR)
|
| 2845 |
+
|
| 2846 |
+
# except Exception as e:
|
| 2847 |
+
# print(f"❌ FATAL ERROR: {e}")
|
| 2848 |
+
# import traceback
|
| 2849 |
+
# traceback.print_exc()
|
| 2850 |
+
# return None
|
| 2851 |
+
|
| 2852 |
+
# finally:
|
| 2853 |
+
# try:
|
| 2854 |
+
# for f in glob.glob(os.path.join(temp_pipeline_dir, '*')):
|
| 2855 |
+
# os.remove(f)
|
| 2856 |
+
# os.rmdir(temp_pipeline_dir)
|
| 2857 |
+
# except Exception: pass
|
| 2858 |
+
|
| 2859 |
+
# print("\n" + "#" * 80)
|
| 2860 |
+
# print("### OPTIMIZED PIPELINE EXECUTION COMPLETE ###")
|
| 2861 |
+
# print("#" * 80)
|
| 2862 |
+
# return final_result
|
| 2863 |
+
|
| 2864 |
+
# if __name__ == "__main__":
|
| 2865 |
+
# parser = argparse.ArgumentParser(description="Complete Pipeline")
|
| 2866 |
+
# parser.add_argument("--input_pdf", type=str, required=True, help="Input PDF")
|
| 2867 |
+
# parser.add_argument("--layoutlmv3_model_path", type=str, default=DEFAULT_LAYOUTLMV3_MODEL_PATH, help="Model Path")
|
| 2868 |
+
# parser.add_argument("--ls_output_path", type=str, default=None, help="Label Studio Output Path")
|
| 2869 |
+
# args = parser.parse_args()
|
| 2870 |
+
|
| 2871 |
+
# pdf_name = os.path.splitext(os.path.basename(args.input_pdf))[0]
|
| 2872 |
+
# final_output_path = os.path.abspath(f"{pdf_name}_final_output_embedded.json")
|
| 2873 |
+
# ls_output_path = os.path.abspath(args.ls_output_path if args.ls_output_path else f"{pdf_name}_label_studio_tasks.json")
|
| 2874 |
+
|
| 2875 |
+
# final_json_data = run_document_pipeline(args.input_pdf, args.layoutlmv3_model_path, ls_output_path)
|
| 2876 |
+
|
| 2877 |
+
# if final_json_data:
|
| 2878 |
+
# with open(final_output_path, 'w', encoding='utf-8') as f:
|
| 2879 |
+
# json.dump(final_json_data, f, indent=2, ensure_ascii=False)
|
| 2880 |
+
# print(f"\n✅ Final Data Saved: {final_output_path}")
|
| 2881 |
+
# else:
|
| 2882 |
+
# print("\n❌ Pipeline Failed.")
|
| 2883 |
+
# sys.exit(1)
|
| 2884 |
+
|
| 2885 |
+
|
| 2886 |
+
|
| 2887 |
+
|
| 2888 |
import json
|
| 2889 |
import argparse
|
| 2890 |
import os
|
|
|
|
| 3175 |
|
| 3176 |
|
| 3177 |
|
|
|
|
| 3178 |
def calculate_x_gutters(word_data: list, params: Dict, page_height: float) -> List[int]:
|
| 3179 |
"""
|
| 3180 |
Calculates X-axis histogram and validates using BRIDGING DENSITY and Vertical Coverage.
|
|
|
|
| 3197 |
|
| 3198 |
# Histogram Setup
|
| 3199 |
bin_size = params.get('cluster_bin_size', 5)
|
| 3200 |
+
smoothing = params.get('cluster_smoothing', 1)
|
| 3201 |
min_width = params.get('cluster_min_width', 20)
|
| 3202 |
threshold_percentile = params.get('cluster_threshold_percentile', 85)
|
| 3203 |
|
|
|
|
| 3236 |
|
| 3237 |
# THRESHOLD: If bridging blocks > 8% of page height, REJECT.
|
| 3238 |
# This allows for page numbers or headers (usually < 5%) to cross, but NOT paragraphs.
|
| 3239 |
+
if bridging_ratio > 0.00:
|
| 3240 |
+
print(f" ❌ Separator X={x_coord} REJECTED: Bridging Ratio {bridging_ratio:.1%} (>15%) cuts through text.")
|
| 3241 |
continue
|
| 3242 |
|
| 3243 |
# --- CHECK 2: VERTICAL GAP COVERAGE (The "Clean Split" Check) ---
|
| 3244 |
# The gap must exist cleanly for > 65% of the text height.
|
| 3245 |
coverage = calculate_vertical_gap_coverage(word_data, x_coord, page_height, gutter_width=min_width)
|
| 3246 |
|
| 3247 |
+
if coverage >= 0.80:
|
| 3248 |
final_separators.append(x_coord)
|
| 3249 |
print(f" -> Separator X={x_coord} ACCEPTED (Coverage: {coverage:.1%}, Bridging: {bridging_ratio:.1%})")
|
| 3250 |
else:
|
|
|
|
| 3371 |
page_height_pdf = fitz_page.rect.height
|
| 3372 |
|
| 3373 |
column_detection_params = {
|
| 3374 |
+
'cluster_bin_size': 2, 'cluster_smoothing': 2,
|
| 3375 |
+
'cluster_min_width': 10, 'cluster_threshold_percentile': 85,
|
| 3376 |
}
|
| 3377 |
|
| 3378 |
separators = calculate_x_gutters(masked_word_data, column_detection_params, page_height_pdf)
|