Spaces:
Running
on
Zero
Running
on
Zero
Commit
·
91a801a
1
Parent(s):
fe75e01
Autoforge wrapper app
Browse files# Conflicts:
# README.md
- README.md +36 -1
- app.py +783 -0
- default_materials.csv +4 -0
- requirements.txt +2 -0
README.md
CHANGED
|
@@ -11,4 +11,39 @@ license: other
|
|
| 11 |
short_description: Generating 3D printed layered models from an input image
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
short_description: Generating 3D printed layered models from an input image
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# AutoForge
|
| 15 |
+
|
| 16 |
+
AutoForge is a Python tool for generating 3D printed layered models from an input image. Using a learned optimization strategy with a Gumbel softmax formulation, AutoForge assigns materials per layer and produces both a discretized composite image and a 3D-printable STL file. It also generates swap instructions to guide the printer through material changes during a multi-material print. \
|
| 17 |
+
|
| 18 |
+
**TLDR:** It uses a picture to generate a 3D layer image that you can print with a 3d printer. Similar to [Hueforge](https://shop.thehueforge.com/), but without the manual work (and without the artistic control).
|
| 19 |
+
|
| 20 |
+
## Example
|
| 21 |
+
All examples use only the 13 BambuLab Basic filaments, currently available in Hueforge, the background color is set to black.
|
| 22 |
+
The pruning is set to a maximum of 8 color and 20 swaps, so each image uses at most 8 different colors and swaps the filament at most 20 times.
|
| 23 |
+
<div style="display: flex; justify-content: center; gap: 20px;">
|
| 24 |
+
<div style="text-align: center;">
|
| 25 |
+
<h3>Input Image</h3>
|
| 26 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/lofi.jpg" width="200" />
|
| 27 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/nature.jpg" width="200" />
|
| 28 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/cat.jpg" width="200" />
|
| 29 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/chameleon.jpg" width="200" />
|
| 30 |
+
</div>
|
| 31 |
+
<div style="text-align: center;">
|
| 32 |
+
<h3>Autoforge Output</h3>
|
| 33 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/lofi_discretized.png" width="200" />
|
| 34 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/nature_discretized.png" width="200" />
|
| 35 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/cat_discretized.png" width="200" />
|
| 36 |
+
<img src="https://github.com/hvoss-techfak/AutoForge/blob/main/images/chameleon_discretized.png" width="200" />
|
| 37 |
+
</div>
|
| 38 |
+
</div>
|
| 39 |
+
|
| 40 |
+
## Features
|
| 41 |
+
|
| 42 |
+
- **Image-to-Model Conversion**: Converts an input image into a layered model suitable for 3D printing.
|
| 43 |
+
- **Learned Optimization**: Optimizes per-pixel height and per-layer material assignments using PyTorch.
|
| 44 |
+
- **Learned Heightmap**: Optimizes the height of the layered model to create more detailed prints.
|
| 45 |
+
- **Gumbel Softmax Sampling**: Leverages the Gumbel softmax method to decide material assignments for each layer.
|
| 46 |
+
- **STL File Generation**: Exports an ASCII STL file based on the optimized height map.
|
| 47 |
+
- **Swap Instructions**: Generates clear swap instructions for changing materials during printing.
|
| 48 |
+
- **Live Visualization**: (Optional) Displays live composite images during the optimization process.
|
| 49 |
+
- **Hueforge export**: Outputs a project file that can be opened with hueforge.
|
app.py
ADDED
|
@@ -0,0 +1,783 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import os
|
| 4 |
+
import subprocess
|
| 5 |
+
import time
|
| 6 |
+
import shutil
|
| 7 |
+
import sys
|
| 8 |
+
from datetime import datetime
|
| 9 |
+
import re
|
| 10 |
+
from PIL import Image
|
| 11 |
+
|
| 12 |
+
# --- Configuration ---
|
| 13 |
+
#AUTFORGE_SCRIPT_PATH = "auto_forge.py" # Make sure this points to your script
|
| 14 |
+
DEFAULT_MATERIALS_CSV = "default_materials.csv"
|
| 15 |
+
GRADIO_OUTPUT_BASE_DIR = "output"
|
| 16 |
+
os.makedirs(GRADIO_OUTPUT_BASE_DIR, exist_ok=True)
|
| 17 |
+
|
| 18 |
+
REQUIRED_SCRIPT_COLS = ["Brand", " Name", " TD", " Color"]
|
| 19 |
+
DISPLAY_COL_MAP = {
|
| 20 |
+
"Brand": "Brand",
|
| 21 |
+
" Name": "Name",
|
| 22 |
+
" TD": "TD",
|
| 23 |
+
" Color": "Color (Hex)",
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def ensure_required_cols(df, *, in_display_space):
|
| 28 |
+
"""
|
| 29 |
+
Return a copy of *df* with every required column present.
|
| 30 |
+
If *in_display_space* is True we use the display names
|
| 31 |
+
(Brand, Name, TD, Color (Hex)); otherwise we use the script names.
|
| 32 |
+
"""
|
| 33 |
+
target_cols = (
|
| 34 |
+
DISPLAY_COL_MAP if in_display_space else {k: k for k in REQUIRED_SCRIPT_COLS}
|
| 35 |
+
)
|
| 36 |
+
df_fixed = df.copy()
|
| 37 |
+
for col_script, col_display in target_cols.items():
|
| 38 |
+
if col_display not in df_fixed.columns:
|
| 39 |
+
# sensible defaults
|
| 40 |
+
if "TD" in col_display:
|
| 41 |
+
default = 0.0
|
| 42 |
+
elif "Color" in col_display:
|
| 43 |
+
default = "#000000"
|
| 44 |
+
elif "Owned" in col_display: # NEW
|
| 45 |
+
default = "false"
|
| 46 |
+
else:
|
| 47 |
+
default = ""
|
| 48 |
+
df_fixed[col_display] = default
|
| 49 |
+
# order columns nicely
|
| 50 |
+
return df_fixed[list(target_cols.values())]
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def rgba_to_hex(col: str) -> str:
|
| 54 |
+
"""
|
| 55 |
+
Turn 'rgba(r, g, b, a)' or 'rgb(r, g, b)' into '#RRGGBB'.
|
| 56 |
+
If the input is already a hex code or anything unexpected,
|
| 57 |
+
return it unchanged.
|
| 58 |
+
"""
|
| 59 |
+
if not isinstance(col, str):
|
| 60 |
+
return col
|
| 61 |
+
col = col.strip()
|
| 62 |
+
if col.startswith("#"): # already fine
|
| 63 |
+
return col.upper()
|
| 64 |
+
|
| 65 |
+
m = re.match(
|
| 66 |
+
r"rgba?\(\s*([\d.]+)\s*,\s*([\d.]+)\s*,\s*([\d.]+)(?:\s*,\s*[\d.]+)?\s*\)",
|
| 67 |
+
col,
|
| 68 |
+
)
|
| 69 |
+
if not m:
|
| 70 |
+
return col # not something we recognise
|
| 71 |
+
|
| 72 |
+
r, g, b = (int(float(x)) for x in m.groups()[:3])
|
| 73 |
+
return "#{:02X}{:02X}{:02X}".format(r, g, b)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
# --- Helper Functions ---
|
| 77 |
+
def get_script_args_info(exclude_args=None):
|
| 78 |
+
if exclude_args is None:
|
| 79 |
+
exclude_args = []
|
| 80 |
+
|
| 81 |
+
all_args_info = [
|
| 82 |
+
# input_image is handled separately in the UI
|
| 83 |
+
{
|
| 84 |
+
"name": "--iterations",
|
| 85 |
+
"type": "number",
|
| 86 |
+
"default": 2000,
|
| 87 |
+
"help": "Number of optimization iterations",
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"name": "--layer_height",
|
| 91 |
+
"type": "number",
|
| 92 |
+
"default": 0.04,
|
| 93 |
+
"step": 0.01,
|
| 94 |
+
"help": "Layer thickness in mm",
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"name": "--max_layers",
|
| 98 |
+
"type": "number",
|
| 99 |
+
"default": 75,
|
| 100 |
+
"precision": 0,
|
| 101 |
+
"help": "Maximum number of layers",
|
| 102 |
+
},
|
| 103 |
+
{
|
| 104 |
+
"name": "--learning_rate",
|
| 105 |
+
"type": "number",
|
| 106 |
+
"default": 0.015,
|
| 107 |
+
"step": 0.001,
|
| 108 |
+
"help": "Learning rate for optimization",
|
| 109 |
+
},
|
| 110 |
+
{
|
| 111 |
+
"name": "--background_height",
|
| 112 |
+
"type": "number",
|
| 113 |
+
"default": 0.4,
|
| 114 |
+
"step": 0.01,
|
| 115 |
+
"help": "Height of the background in mm",
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"name": "--background_color",
|
| 119 |
+
"type": "colorpicker",
|
| 120 |
+
"default": "#000000",
|
| 121 |
+
"help": "Background color",
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"name": "--stl_output_size",
|
| 125 |
+
"type": "number",
|
| 126 |
+
"default": 100,
|
| 127 |
+
"precision": 0,
|
| 128 |
+
"help": "Size of the longest dimension of the output STL file in mm",
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"name": "--nozzle_diameter",
|
| 132 |
+
"type": "number",
|
| 133 |
+
"default": 0.4,
|
| 134 |
+
"step": 0.1,
|
| 135 |
+
"help": "Diameter of the printer nozzle in mm",
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"name": "--pruning_max_colors",
|
| 139 |
+
"type": "number",
|
| 140 |
+
"default": 10,
|
| 141 |
+
"precision": 0,
|
| 142 |
+
"help": "Max number of colors allowed after pruning",
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"name": "--pruning_max_swaps",
|
| 146 |
+
"type": "number",
|
| 147 |
+
"default": 20,
|
| 148 |
+
"precision": 0,
|
| 149 |
+
"help": "Max number of swaps allowed after pruning",
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"name": "--pruning_max_layer",
|
| 153 |
+
"type": "number",
|
| 154 |
+
"default": 75,
|
| 155 |
+
"precision": 0,
|
| 156 |
+
"help": "Max number of layers allowed after pruning",
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"name": "--warmup_fraction",
|
| 160 |
+
"type": "slider",
|
| 161 |
+
"default": 1.0,
|
| 162 |
+
"min": 0.0,
|
| 163 |
+
"max": 1.0,
|
| 164 |
+
"step": 0.01,
|
| 165 |
+
"help": "Fraction of iterations for keeping the tau at the initial value",
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"name": "--learning_rate_warmup_fraction",
|
| 169 |
+
"type": "slider",
|
| 170 |
+
"default": 0.25,
|
| 171 |
+
"min": 0.0,
|
| 172 |
+
"max": 1.0,
|
| 173 |
+
"step": 0.01,
|
| 174 |
+
"help": "Fraction of iterations that the learning rate is increasing (warmup)",
|
| 175 |
+
},
|
| 176 |
+
# {
|
| 177 |
+
# "name": "--init_tau",
|
| 178 |
+
# "type": "number",
|
| 179 |
+
# "default": 1.0,
|
| 180 |
+
# "help": "Initial tau value for Gumbel-Softmax",
|
| 181 |
+
# },
|
| 182 |
+
# {
|
| 183 |
+
# "name": "--final_tau",
|
| 184 |
+
# "type": "number",
|
| 185 |
+
# "default": 0.01,
|
| 186 |
+
# "help": "Final tau value for Gumbel-Softmax",
|
| 187 |
+
# },
|
| 188 |
+
# {
|
| 189 |
+
# "name": "--min_layers",
|
| 190 |
+
# "type": "number",
|
| 191 |
+
# "default": 0,
|
| 192 |
+
# "precision": 0,
|
| 193 |
+
# "help": "Minimum number of layers. Used for pruning.",
|
| 194 |
+
# },
|
| 195 |
+
{
|
| 196 |
+
"name": "--early_stopping",
|
| 197 |
+
"type": "number",
|
| 198 |
+
"default": 1500,
|
| 199 |
+
"precision": 0,
|
| 200 |
+
"help": "Number of steps without improvement before stopping",
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"name": "--random_seed",
|
| 204 |
+
"type": "number",
|
| 205 |
+
"default": 0,
|
| 206 |
+
"precision": 0,
|
| 207 |
+
"help": "Specify the random seed, or use 0 for automatic generation",
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"name": "--num_init_rounds",
|
| 211 |
+
"type": "number",
|
| 212 |
+
"default": 32,
|
| 213 |
+
"precision": 0,
|
| 214 |
+
"help": "Number of rounds to choose the starting height map from.",
|
| 215 |
+
},
|
| 216 |
+
]
|
| 217 |
+
return [arg for arg in all_args_info if arg["name"] not in exclude_args]
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
# Initial filament data
|
| 221 |
+
initial_filament_data = {
|
| 222 |
+
"Brand": ["Generic", "Generic", "Generic"],
|
| 223 |
+
" Name": ["PLA Black", "PLA Grey", "PLA White"],
|
| 224 |
+
" TD": [1.0, 1.0, 1.0],
|
| 225 |
+
" Color": ["#000000", "#808080", "#FFFFFF"],
|
| 226 |
+
" Owned": ["true", "true", "true"], # ← add
|
| 227 |
+
}
|
| 228 |
+
initial_df = pd.DataFrame(initial_filament_data)
|
| 229 |
+
|
| 230 |
+
if os.path.exists(DEFAULT_MATERIALS_CSV):
|
| 231 |
+
try:
|
| 232 |
+
initial_df = pd.read_csv(DEFAULT_MATERIALS_CSV)
|
| 233 |
+
for col in ["Brand", " Name", " TD", " Color"]:
|
| 234 |
+
if col not in initial_df.columns:
|
| 235 |
+
initial_df[col] = None
|
| 236 |
+
initial_df = initial_df[["Brand", " Name", " TD", " Color"]].astype(
|
| 237 |
+
{" TD": float, " Color": str}
|
| 238 |
+
)
|
| 239 |
+
except Exception as e:
|
| 240 |
+
print(f"Warning: Could not load {DEFAULT_MATERIALS_CSV}: {e}. Using default.")
|
| 241 |
+
initial_df = pd.DataFrame(initial_filament_data)
|
| 242 |
+
else:
|
| 243 |
+
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
# Helper for creating an empty 10-tuple for error returns
|
| 247 |
+
def create_empty_error_outputs(log_message=""):
|
| 248 |
+
return (
|
| 249 |
+
log_message, # progress_output
|
| 250 |
+
None, # final_image_preview
|
| 251 |
+
gr.update(visible=False, interactive=False), # ### ZIP: download_zip
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
# --- Gradio UI Definition ---
|
| 256 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 257 |
+
gr.Markdown("# Autoforge Web UI")
|
| 258 |
+
|
| 259 |
+
filament_df_state = gr.State(initial_df.copy())
|
| 260 |
+
current_run_output_dir = gr.State(None)
|
| 261 |
+
|
| 262 |
+
with gr.Tabs():
|
| 263 |
+
with gr.TabItem("Filament Management"):
|
| 264 |
+
gr.Markdown(
|
| 265 |
+
'Manage your filament list. This list will be saved as a CSV and used by the Autoforge process. \n To remove a filament simply rightclick on any of the fields and select "Delete Row"'
|
| 266 |
+
)
|
| 267 |
+
with gr.Row():
|
| 268 |
+
load_csv_button = gr.UploadButton(
|
| 269 |
+
"Load Filaments CSV", file_types=[".csv"]
|
| 270 |
+
)
|
| 271 |
+
save_csv_button = gr.Button("Save Current Filaments to CSV")
|
| 272 |
+
filament_table = gr.DataFrame(
|
| 273 |
+
value=ensure_required_cols(
|
| 274 |
+
initial_df.copy().rename(
|
| 275 |
+
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
|
| 276 |
+
),
|
| 277 |
+
in_display_space=True,
|
| 278 |
+
),
|
| 279 |
+
headers=["Brand", "Name", "TD", "Color (Hex)"],
|
| 280 |
+
datatype=["str", "str", "number", "str"],
|
| 281 |
+
interactive=True,
|
| 282 |
+
label="Filaments",
|
| 283 |
+
)
|
| 284 |
+
gr.Markdown("### Add New Filament")
|
| 285 |
+
with gr.Row():
|
| 286 |
+
new_brand = gr.Textbox(label="Brand")
|
| 287 |
+
new_name = gr.Textbox(label="Name")
|
| 288 |
+
with gr.Row():
|
| 289 |
+
new_td = gr.Number(
|
| 290 |
+
label="TD (Transmission/Opacity)",
|
| 291 |
+
value=1.0,
|
| 292 |
+
minimum=0,
|
| 293 |
+
maximum=100,
|
| 294 |
+
step=0.1,
|
| 295 |
+
)
|
| 296 |
+
new_color_hex = gr.ColorPicker(label="Color", value="#FF0000")
|
| 297 |
+
add_filament_button = gr.Button("Add Filament to Table")
|
| 298 |
+
download_csv_trigger = gr.File(
|
| 299 |
+
label="Download Filament CSV", visible=False, interactive=False
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
def update_filament_df_state_from_table(display_df):
|
| 303 |
+
display_df = ensure_required_cols(display_df, in_display_space=True)
|
| 304 |
+
|
| 305 |
+
# make sure every colour is hex
|
| 306 |
+
if "Color (Hex)" in display_df.columns:
|
| 307 |
+
display_df["Color (Hex)"] = display_df["Color (Hex)"].apply(
|
| 308 |
+
rgba_to_hex
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
script_df = display_df.rename(
|
| 312 |
+
columns={"Name": " Name", "TD": " TD", "Color (Hex)": " Color"}
|
| 313 |
+
)
|
| 314 |
+
script_df = ensure_required_cols(script_df, in_display_space=False)
|
| 315 |
+
filament_df_state.value = script_df
|
| 316 |
+
|
| 317 |
+
def add_filament_to_table(current_display_df, brand, name, td, color_hex):
|
| 318 |
+
if not brand or not name:
|
| 319 |
+
gr.Warning("Brand and Name cannot be empty.")
|
| 320 |
+
return current_display_df
|
| 321 |
+
|
| 322 |
+
color_hex = rgba_to_hex(color_hex) # <-- new line
|
| 323 |
+
|
| 324 |
+
new_row = pd.DataFrame(
|
| 325 |
+
[{"Brand": brand, "Name": name, "TD": td, "Color (Hex)": color_hex}]
|
| 326 |
+
)
|
| 327 |
+
updated_display_df = pd.concat(
|
| 328 |
+
[current_display_df, new_row], ignore_index=True
|
| 329 |
+
)
|
| 330 |
+
update_filament_df_state_from_table(updated_display_df)
|
| 331 |
+
return updated_display_df
|
| 332 |
+
|
| 333 |
+
def load_filaments_from_csv_upload(file_obj):
|
| 334 |
+
if file_obj is None:
|
| 335 |
+
current_script_df = filament_df_state.value
|
| 336 |
+
if current_script_df is not None and not current_script_df.empty:
|
| 337 |
+
return current_script_df.rename(
|
| 338 |
+
columns={
|
| 339 |
+
" Name": "Name",
|
| 340 |
+
" TD": "TD",
|
| 341 |
+
" Color": "Color (Hex)",
|
| 342 |
+
}
|
| 343 |
+
)
|
| 344 |
+
return initial_df.copy().rename(
|
| 345 |
+
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
|
| 346 |
+
)
|
| 347 |
+
try:
|
| 348 |
+
loaded_script_df = pd.read_csv(file_obj.name)
|
| 349 |
+
loaded_script_df = ensure_required_cols(
|
| 350 |
+
loaded_script_df, in_display_space=False
|
| 351 |
+
)
|
| 352 |
+
expected_cols = ["Brand", " Name", " TD", " Color"]
|
| 353 |
+
if not all(
|
| 354 |
+
col in loaded_script_df.columns for col in expected_cols
|
| 355 |
+
):
|
| 356 |
+
gr.Error(
|
| 357 |
+
f"CSV must contain columns: {', '.join(expected_cols)}. Found: {loaded_script_df.columns.tolist()}"
|
| 358 |
+
)
|
| 359 |
+
current_script_df = filament_df_state.value
|
| 360 |
+
if (
|
| 361 |
+
current_script_df is not None
|
| 362 |
+
and not current_script_df.empty
|
| 363 |
+
):
|
| 364 |
+
return current_script_df.rename(
|
| 365 |
+
columns={
|
| 366 |
+
" Name": "Name",
|
| 367 |
+
" TD": "TD",
|
| 368 |
+
" Color": "Color (Hex)",
|
| 369 |
+
}
|
| 370 |
+
)
|
| 371 |
+
return initial_df.copy().rename(
|
| 372 |
+
columns={
|
| 373 |
+
" Name": "Name",
|
| 374 |
+
" TD": "TD",
|
| 375 |
+
" Color": "Color (Hex)",
|
| 376 |
+
}
|
| 377 |
+
)
|
| 378 |
+
filament_df_state.value = loaded_script_df.copy()
|
| 379 |
+
return loaded_script_df.rename(
|
| 380 |
+
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
|
| 381 |
+
)
|
| 382 |
+
except Exception as e:
|
| 383 |
+
gr.Error(f"Error loading CSV: {e}")
|
| 384 |
+
current_script_df = filament_df_state.value
|
| 385 |
+
if current_script_df is not None and not current_script_df.empty:
|
| 386 |
+
return current_script_df.rename(
|
| 387 |
+
columns={
|
| 388 |
+
" Name": "Name",
|
| 389 |
+
" TD": "TD",
|
| 390 |
+
" Color": "Color (Hex)",
|
| 391 |
+
}
|
| 392 |
+
)
|
| 393 |
+
return initial_df.copy().rename(
|
| 394 |
+
columns={" Name": "Name", " TD": "TD", " Color": "Color (Hex)"}
|
| 395 |
+
)
|
| 396 |
+
|
| 397 |
+
def save_filaments_to_file_for_download(current_script_df_from_state):
|
| 398 |
+
if (
|
| 399 |
+
current_script_df_from_state is None
|
| 400 |
+
or current_script_df_from_state.empty
|
| 401 |
+
):
|
| 402 |
+
gr.Warning("Filament table is empty. Nothing to save.")
|
| 403 |
+
return None
|
| 404 |
+
df_to_save = current_script_df_from_state.copy()
|
| 405 |
+
required_cols = ["Brand", " Name", " TD", " Color"]
|
| 406 |
+
if not all(col in df_to_save.columns for col in required_cols):
|
| 407 |
+
gr.Error(
|
| 408 |
+
f"Cannot save. DataFrame missing required script columns. Expected: {required_cols}. Found: {df_to_save.columns.tolist()}"
|
| 409 |
+
)
|
| 410 |
+
return None
|
| 411 |
+
temp_dir = os.path.join(GRADIO_OUTPUT_BASE_DIR, "_temp_downloads")
|
| 412 |
+
os.makedirs(temp_dir, exist_ok=True)
|
| 413 |
+
temp_filament_csv_path = os.path.join(
|
| 414 |
+
temp_dir,
|
| 415 |
+
f"filaments_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
|
| 416 |
+
)
|
| 417 |
+
try:
|
| 418 |
+
df_to_save.to_csv(temp_filament_csv_path, index=False)
|
| 419 |
+
gr.Info("Filaments prepared for download.")
|
| 420 |
+
return gr.File(
|
| 421 |
+
value=temp_filament_csv_path,
|
| 422 |
+
label="Download Filament CSV",
|
| 423 |
+
interactive=True,
|
| 424 |
+
visible=True,
|
| 425 |
+
)
|
| 426 |
+
except Exception as e:
|
| 427 |
+
gr.Error(f"Error saving CSV for download: {e}")
|
| 428 |
+
return None
|
| 429 |
+
|
| 430 |
+
filament_table.change(
|
| 431 |
+
update_filament_df_state_from_table,
|
| 432 |
+
inputs=[filament_table],
|
| 433 |
+
outputs=None,
|
| 434 |
+
queue=False,
|
| 435 |
+
)
|
| 436 |
+
add_filament_button.click(
|
| 437 |
+
add_filament_to_table,
|
| 438 |
+
inputs=[filament_table, new_brand, new_name, new_td, new_color_hex],
|
| 439 |
+
outputs=[filament_table],
|
| 440 |
+
)
|
| 441 |
+
load_csv_button.upload(
|
| 442 |
+
load_filaments_from_csv_upload,
|
| 443 |
+
inputs=[load_csv_button],
|
| 444 |
+
outputs=[filament_table],
|
| 445 |
+
)
|
| 446 |
+
save_csv_button.click(
|
| 447 |
+
save_filaments_to_file_for_download,
|
| 448 |
+
inputs=[filament_df_state],
|
| 449 |
+
outputs=[download_csv_trigger],
|
| 450 |
+
)
|
| 451 |
+
|
| 452 |
+
with gr.TabItem("Run Autoforge"):
|
| 453 |
+
accordion_params_dict = {}
|
| 454 |
+
accordion_params_ordered_names = []
|
| 455 |
+
|
| 456 |
+
with gr.Row():
|
| 457 |
+
with gr.Column(scale=1):
|
| 458 |
+
gr.Markdown("### Input Image (Required)")
|
| 459 |
+
input_image_component = gr.Image(
|
| 460 |
+
type="filepath",
|
| 461 |
+
image_mode="RGBA",
|
| 462 |
+
label="Upload Image",
|
| 463 |
+
sources=["upload"],
|
| 464 |
+
interactive=True,
|
| 465 |
+
)
|
| 466 |
+
with gr.Column(scale=2):
|
| 467 |
+
gr.Markdown("### Autoforge Parameters")
|
| 468 |
+
with gr.Accordion("Progress & Output", open=True):
|
| 469 |
+
final_image_preview = gr.Image(
|
| 470 |
+
label="Final Model Preview",
|
| 471 |
+
type="filepath",
|
| 472 |
+
interactive=False,
|
| 473 |
+
)
|
| 474 |
+
with gr.Row():
|
| 475 |
+
download_zip = gr.File( # was visible=True
|
| 476 |
+
label="Download all results (.zip)",
|
| 477 |
+
interactive=True,
|
| 478 |
+
visible=False,
|
| 479 |
+
)
|
| 480 |
+
with gr.Row():
|
| 481 |
+
with gr.Accordion("Adjust Parameters", open=False):
|
| 482 |
+
args_for_accordion = get_script_args_info(
|
| 483 |
+
exclude_args=["--input_image"]
|
| 484 |
+
)
|
| 485 |
+
|
| 486 |
+
for arg in args_for_accordion:
|
| 487 |
+
label, info, default_val = (
|
| 488 |
+
f"{arg['name']}",
|
| 489 |
+
arg["help"],
|
| 490 |
+
arg.get("default"),
|
| 491 |
+
)
|
| 492 |
+
if arg["type"] == "number":
|
| 493 |
+
accordion_params_dict[arg["name"]] = gr.Number(
|
| 494 |
+
label=label,
|
| 495 |
+
value=default_val,
|
| 496 |
+
info=info,
|
| 497 |
+
minimum=arg.get("min"),
|
| 498 |
+
maximum=arg.get("max"),
|
| 499 |
+
step=arg.get(
|
| 500 |
+
"step",
|
| 501 |
+
0.001 if isinstance(default_val, float) else 1,
|
| 502 |
+
),
|
| 503 |
+
precision=arg.get("precision", None),
|
| 504 |
+
)
|
| 505 |
+
elif arg["type"] == "slider":
|
| 506 |
+
accordion_params_dict[arg["name"]] = gr.Slider(
|
| 507 |
+
label=label,
|
| 508 |
+
value=default_val,
|
| 509 |
+
info=info,
|
| 510 |
+
minimum=arg.get("min", 0),
|
| 511 |
+
maximum=arg.get("max", 1),
|
| 512 |
+
step=arg.get("step", 0.01),
|
| 513 |
+
)
|
| 514 |
+
elif arg["type"] == "checkbox":
|
| 515 |
+
accordion_params_dict[arg["name"]] = gr.Checkbox(
|
| 516 |
+
label=label, value=default_val, info=info
|
| 517 |
+
)
|
| 518 |
+
elif arg["type"] == "colorpicker":
|
| 519 |
+
accordion_params_dict[arg["name"]] = gr.ColorPicker(
|
| 520 |
+
label=label, value=default_val, info=info
|
| 521 |
+
)
|
| 522 |
+
else:
|
| 523 |
+
accordion_params_dict[arg["name"]] = gr.Textbox(
|
| 524 |
+
label=label, value=str(default_val), info=info
|
| 525 |
+
)
|
| 526 |
+
accordion_params_ordered_names.append(arg["name"])
|
| 527 |
+
|
| 528 |
+
run_button = gr.Button(
|
| 529 |
+
"Run Autoforge Process",
|
| 530 |
+
variant="primary",
|
| 531 |
+
elem_id="run_button_full_width",
|
| 532 |
+
)
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
progress_output = gr.Textbox(
|
| 536 |
+
label="Console Output",
|
| 537 |
+
lines=15,
|
| 538 |
+
autoscroll=True,
|
| 539 |
+
show_copy_button=False,
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
# --- Backend Function for Running the Script ---
|
| 543 |
+
def execute_autoforge_script(
|
| 544 |
+
current_filaments_df_state_val, input_image_path, *accordion_param_values
|
| 545 |
+
):
|
| 546 |
+
# 0. Validate Inputs
|
| 547 |
+
if (
|
| 548 |
+
not input_image_path
|
| 549 |
+
): # Covers None and empty string from gr.Image(type="filepath")
|
| 550 |
+
gr.Error("Input Image is required! Please upload an image.")
|
| 551 |
+
return create_empty_error_outputs("Error: Input Image is required!")
|
| 552 |
+
|
| 553 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 554 |
+
run_output_dir_val = os.path.join(GRADIO_OUTPUT_BASE_DIR, f"run_{timestamp}")
|
| 555 |
+
os.makedirs(run_output_dir_val, exist_ok=True)
|
| 556 |
+
current_run_output_dir.value = run_output_dir_val
|
| 557 |
+
|
| 558 |
+
# 1. Save current filaments
|
| 559 |
+
if (
|
| 560 |
+
current_filaments_df_state_val is None
|
| 561 |
+
or current_filaments_df_state_val.empty
|
| 562 |
+
):
|
| 563 |
+
gr.Error("Filament table is empty. Please add filaments.")
|
| 564 |
+
return create_empty_error_outputs("Error: Filament table is empty.")
|
| 565 |
+
|
| 566 |
+
temp_filament_csv = os.path.join(run_output_dir_val, "materials.csv")
|
| 567 |
+
df_to_save = current_filaments_df_state_val.copy()
|
| 568 |
+
required_cols = ["Brand", " Name", " TD", " Color"]
|
| 569 |
+
missing_cols = [col for col in required_cols if col not in df_to_save.columns]
|
| 570 |
+
if missing_cols:
|
| 571 |
+
err_msg = (
|
| 572 |
+
f"Error: Filament data is missing columns: {', '.join(missing_cols)}."
|
| 573 |
+
)
|
| 574 |
+
gr.Error(err_msg)
|
| 575 |
+
return create_empty_error_outputs(err_msg)
|
| 576 |
+
try:
|
| 577 |
+
df_to_save.to_csv(temp_filament_csv, index=False)
|
| 578 |
+
except Exception as e:
|
| 579 |
+
err_msg = f"Error saving temporary filament CSV: {e}"
|
| 580 |
+
gr.Error(err_msg)
|
| 581 |
+
return create_empty_error_outputs(err_msg)
|
| 582 |
+
|
| 583 |
+
# 2. Construct command
|
| 584 |
+
python_executable = sys.executable or "python"
|
| 585 |
+
command = ["autoforge",]
|
| 586 |
+
command.extend(["--csv_file", temp_filament_csv])
|
| 587 |
+
command.extend(["--output_folder", run_output_dir_val])
|
| 588 |
+
command.extend(["--disable_visualization_for_gradio","1"])
|
| 589 |
+
|
| 590 |
+
base_filename = os.path.basename(input_image_path)
|
| 591 |
+
script_input_image_path = os.path.join(run_output_dir_val, base_filename)
|
| 592 |
+
try:
|
| 593 |
+
img = Image.open(input_image_path)
|
| 594 |
+
# decide where to store the image we pass to Autoforge
|
| 595 |
+
base_no_ext, _ = os.path.splitext(os.path.basename(input_image_path))
|
| 596 |
+
script_input_image_path = os.path.join(
|
| 597 |
+
run_output_dir_val, f"{base_no_ext}.png"
|
| 598 |
+
)
|
| 599 |
+
|
| 600 |
+
if img.mode in ("RGBA", "LA") or (
|
| 601 |
+
img.mode == "P" and "transparency" in img.info
|
| 602 |
+
):
|
| 603 |
+
# the uploaded file has an alpha channel – save it as PNG
|
| 604 |
+
img.save(script_input_image_path, format="PNG")
|
| 605 |
+
else:
|
| 606 |
+
# no alpha present – just copy the file in whatever format it was
|
| 607 |
+
script_input_image_path = os.path.join(
|
| 608 |
+
run_output_dir_val, os.path.basename(input_image_path)
|
| 609 |
+
)
|
| 610 |
+
shutil.copy(input_image_path, script_input_image_path)
|
| 611 |
+
|
| 612 |
+
command.extend(["--input_image", script_input_image_path])
|
| 613 |
+
except Exception as e:
|
| 614 |
+
err_msg = f"Error handling input image: {e}"
|
| 615 |
+
gr.Error(err_msg)
|
| 616 |
+
return create_empty_error_outputs(err_msg)
|
| 617 |
+
|
| 618 |
+
param_dict = dict(zip(accordion_params_ordered_names, accordion_param_values))
|
| 619 |
+
for arg_name, arg_widget_val in param_dict.items():
|
| 620 |
+
if arg_widget_val is None or arg_widget_val == "":
|
| 621 |
+
arg_info_list = [
|
| 622 |
+
item for item in get_script_args_info() if item["name"] == arg_name
|
| 623 |
+
] # get full list to check type
|
| 624 |
+
if (
|
| 625 |
+
arg_info_list
|
| 626 |
+
and arg_info_list[0]["type"] == "checkbox"
|
| 627 |
+
and arg_widget_val is False
|
| 628 |
+
):
|
| 629 |
+
continue
|
| 630 |
+
else:
|
| 631 |
+
continue
|
| 632 |
+
if isinstance(arg_widget_val, bool):
|
| 633 |
+
if arg_widget_val:
|
| 634 |
+
command.append(arg_name)
|
| 635 |
+
else:
|
| 636 |
+
command.extend([arg_name, str(arg_widget_val)])
|
| 637 |
+
|
| 638 |
+
# 3. Run script
|
| 639 |
+
log_output = (
|
| 640 |
+
f"Starting Autoforge process at "
|
| 641 |
+
f"{datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n"
|
| 642 |
+
f"Output directory: {run_output_dir_val}\n"
|
| 643 |
+
f"Command: {' '.join(command)}\n\n"
|
| 644 |
+
)
|
| 645 |
+
|
| 646 |
+
yield create_empty_error_outputs(log_output) # clear UI and show header
|
| 647 |
+
|
| 648 |
+
process = subprocess.Popen(
|
| 649 |
+
command,
|
| 650 |
+
stdout=subprocess.PIPE,
|
| 651 |
+
stderr=subprocess.PIPE,
|
| 652 |
+
text=True,
|
| 653 |
+
bufsize=1,
|
| 654 |
+
universal_newlines=True,
|
| 655 |
+
)
|
| 656 |
+
|
| 657 |
+
# ---- helper: read stdout in a background thread -------------------
|
| 658 |
+
from threading import Thread
|
| 659 |
+
from queue import Queue, Empty
|
| 660 |
+
|
| 661 |
+
def _enqueue(pipe, q):
|
| 662 |
+
"""Forward stdout/stderr to a queue, emitting on both '\n' and '\r'."""
|
| 663 |
+
buf = ""
|
| 664 |
+
while True:
|
| 665 |
+
ch = pipe.read(1) # read a single character
|
| 666 |
+
if ch == "": # EOF
|
| 667 |
+
if buf:
|
| 668 |
+
q.put(buf) # flush whatever is left
|
| 669 |
+
break
|
| 670 |
+
buf += ch
|
| 671 |
+
if ch in ("\n", "\r"): # tqdm uses '\r'
|
| 672 |
+
q.put(buf)
|
| 673 |
+
buf = ""
|
| 674 |
+
pipe.close()
|
| 675 |
+
|
| 676 |
+
q_out = Queue()
|
| 677 |
+
Thread(target=_enqueue, args=(process.stdout, q_out), daemon=True).start()
|
| 678 |
+
Thread(target=_enqueue, args=(process.stderr, q_out), daemon=True).start()
|
| 679 |
+
|
| 680 |
+
preview_mtime = 0
|
| 681 |
+
last_push = 0
|
| 682 |
+
|
| 683 |
+
def _maybe_new_preview():
|
| 684 |
+
"""
|
| 685 |
+
If vis_temp.png has a newer mtime than last time, copy it to a
|
| 686 |
+
stamped name (to defeat browser cache) and return that path.
|
| 687 |
+
Otherwise return gr.update() so the image stays as-is.
|
| 688 |
+
"""
|
| 689 |
+
from gradio import update # local import for clarity
|
| 690 |
+
|
| 691 |
+
nonlocal preview_mtime
|
| 692 |
+
|
| 693 |
+
src = os.path.join(run_output_dir_val, "vis_temp.png")
|
| 694 |
+
if not os.path.exists(src):
|
| 695 |
+
return update() # nothing new, keep old
|
| 696 |
+
|
| 697 |
+
mtime = os.path.getmtime(src)
|
| 698 |
+
if mtime <= preview_mtime: # unchanged
|
| 699 |
+
return update() # → no UI update
|
| 700 |
+
|
| 701 |
+
return src # → refresh image
|
| 702 |
+
|
| 703 |
+
# ---- main loop: poll every 0.5 s ----------------------------------
|
| 704 |
+
while process.poll() is None or not q_out.empty():
|
| 705 |
+
# drain whatever is waiting in stdout
|
| 706 |
+
try:
|
| 707 |
+
while True:
|
| 708 |
+
log_output += q_out.get_nowait()
|
| 709 |
+
except Empty:
|
| 710 |
+
pass
|
| 711 |
+
|
| 712 |
+
now = time.time()
|
| 713 |
+
if now - last_push >= 1.0: # 500 ms tick
|
| 714 |
+
current_preview = _maybe_new_preview()
|
| 715 |
+
yield (
|
| 716 |
+
log_output,
|
| 717 |
+
current_preview,
|
| 718 |
+
gr.update(), # ### ZIP PATCH: placeholder for zip widget
|
| 719 |
+
)
|
| 720 |
+
last_push = now
|
| 721 |
+
|
| 722 |
+
time.sleep(0.05) # keep CPU load low
|
| 723 |
+
|
| 724 |
+
return_code = process.wait()
|
| 725 |
+
log_output += (
|
| 726 |
+
"\nAutoforge process completed successfully!"
|
| 727 |
+
if return_code == 0
|
| 728 |
+
else f"\nAutoforge process failed with exit code {return_code}."
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
# make sure we show the final preview (if any)
|
| 732 |
+
final_preview = _maybe_new_preview() or os.path.join(
|
| 733 |
+
run_output_dir_val, "final_model.png"
|
| 734 |
+
)
|
| 735 |
+
|
| 736 |
+
zip_base = os.path.join(
|
| 737 |
+
run_output_dir_val, "autoforge_results"
|
| 738 |
+
) # ### ZIP PATCH
|
| 739 |
+
zip_path = shutil.make_archive(zip_base, "zip", run_output_dir_val)
|
| 740 |
+
|
| 741 |
+
# 4. Prepare output file paths
|
| 742 |
+
png_path = os.path.join(run_output_dir_val, "final_model.png")
|
| 743 |
+
stl_path = os.path.join(run_output_dir_val, "final_model.stl")
|
| 744 |
+
txt_path = os.path.join(run_output_dir_val, "swap_instructions.txt")
|
| 745 |
+
hfp_path = os.path.join(run_output_dir_val, "project_file.hfp")
|
| 746 |
+
|
| 747 |
+
out_png = png_path if os.path.exists(png_path) else None
|
| 748 |
+
out_stl = stl_path if os.path.exists(stl_path) else None
|
| 749 |
+
out_txt = txt_path if os.path.exists(txt_path) else None
|
| 750 |
+
out_hfp = hfp_path if os.path.exists(hfp_path) else None
|
| 751 |
+
|
| 752 |
+
if out_png is None:
|
| 753 |
+
log_output += "\nWarning: final_model.png not found in output."
|
| 754 |
+
|
| 755 |
+
yield (
|
| 756 |
+
log_output, # progress_output
|
| 757 |
+
out_png, # final_image_preview
|
| 758 |
+
gr.update(
|
| 759 |
+
value=zip_path, visible=True, interactive=True
|
| 760 |
+
), # ### ZIP PATCH: download_zip
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
run_inputs = [filament_df_state, input_image_component] + [
|
| 764 |
+
accordion_params_dict[name] for name in accordion_params_ordered_names
|
| 765 |
+
]
|
| 766 |
+
run_outputs = [
|
| 767 |
+
progress_output,
|
| 768 |
+
final_image_preview,
|
| 769 |
+
download_zip, # ### ZIP PATCH: only three outputs now
|
| 770 |
+
]
|
| 771 |
+
|
| 772 |
+
run_button.click(execute_autoforge_script, inputs=run_inputs, outputs=run_outputs)
|
| 773 |
+
|
| 774 |
+
css = """ #run_button_full_width { width: 100%; } """
|
| 775 |
+
if __name__ == "__main__":
|
| 776 |
+
if not os.path.exists(DEFAULT_MATERIALS_CSV):
|
| 777 |
+
print(f"Creating default filament file: {DEFAULT_MATERIALS_CSV}")
|
| 778 |
+
try:
|
| 779 |
+
initial_df.to_csv(DEFAULT_MATERIALS_CSV, index=False)
|
| 780 |
+
except Exception as e:
|
| 781 |
+
print(f"Could not write default {DEFAULT_MATERIALS_CSV}: {e}")
|
| 782 |
+
print("To run the UI, execute: python app.py") # Corrected to python app.py
|
| 783 |
+
demo.queue().launch(share=False)
|
default_materials.csv
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Brand, Name, TD, Color, Owned
|
| 2 |
+
Generic,PLA Black,1.0,#000000,true
|
| 3 |
+
Generic,PLA Grey,1.0,#808080,true
|
| 4 |
+
Generic,PLA White,1.0,#FFFFFF,true
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
autoforge
|
| 2 |
+
gradio
|