Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Emotions
|
| 6 |
+
emotions = ["Anger", "Love", "Fear", "Joy", "Sadness", "Surprise"]
|
| 7 |
+
|
| 8 |
+
# Load fine-tuned model
|
| 9 |
+
model_path = "./model"
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 11 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 12 |
+
|
| 13 |
+
def predict_emotions(comment):
|
| 14 |
+
inputs = tokenizer(comment, return_tensors="pt", truncation=True)
|
| 15 |
+
outputs = model(**inputs)
|
| 16 |
+
scores = torch.sigmoid(outputs.logits)[0].detach().numpy()
|
| 17 |
+
return {emotion: float(scores[i]) for i, emotion in enumerate(emotions)}
|
| 18 |
+
|
| 19 |
+
demo = gr.Interface(
|
| 20 |
+
fn=predict_emotions,
|
| 21 |
+
inputs=gr.Textbox(lines=4, placeholder="Enter GitHub comment here..."),
|
| 22 |
+
outputs=gr.Label(num_top_classes=6),
|
| 23 |
+
title="GitHub Comment Emotion Detector",
|
| 24 |
+
description="Detects Anger, Love, Fear, Joy, Sadness, and Surprise in GitHub comments."
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
if __name__ == "__main__":
|
| 28 |
+
demo.launch()
|