Spaces:
Running
Running
evaluate python functions on inputs
Browse files- evaluate.py +143 -0
evaluate.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import subprocess
|
| 4 |
+
import pandas as pd
|
| 5 |
+
# from sklearn.manifold import TSNE
|
| 6 |
+
|
| 7 |
+
from generate import get_solution_file_path, all_models
|
| 8 |
+
from openai import OpenAI
|
| 9 |
+
import time
|
| 10 |
+
|
| 11 |
+
import os
|
| 12 |
+
import subprocess
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
client = OpenAI()
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def evaluate_submission(day: int, model: str):
|
| 20 |
+
"""Evaluates the submission for the given day and model. Returns the result captured from stdout and the total time taken."""
|
| 21 |
+
|
| 22 |
+
# cd to the day directory
|
| 23 |
+
os.chdir(f"day{day:02d}")
|
| 24 |
+
|
| 25 |
+
# get the solution file path, check if it exists
|
| 26 |
+
file_path = get_solution_file_path(model=model)
|
| 27 |
+
if not os.path.exists(file_path):
|
| 28 |
+
print(f"File {file_path} does not exist, skipping")
|
| 29 |
+
return
|
| 30 |
+
else:
|
| 31 |
+
print(f"Evaluating {file_path} for day {day} with model {model}")
|
| 32 |
+
|
| 33 |
+
# run the solution, and capture the output
|
| 34 |
+
timeout = 60 * 5
|
| 35 |
+
start_time = time.time()
|
| 36 |
+
try:
|
| 37 |
+
result = subprocess.run(["python", file_path], capture_output=True, text=True, timeout=timeout)
|
| 38 |
+
print(f"Result: {result.stdout}")
|
| 39 |
+
except subprocess.TimeoutExpired:
|
| 40 |
+
result = subprocess.CompletedProcess(args=["python", file_path], returncode=1, stdout="", stderr="Timeout")
|
| 41 |
+
print(f"Timeout after {timeout} seconds")
|
| 42 |
+
end_time = time.time()
|
| 43 |
+
|
| 44 |
+
total_time = end_time - start_time
|
| 45 |
+
|
| 46 |
+
result = result.stdout if result.returncode == 0 else f"Error: {result.stderr}"
|
| 47 |
+
|
| 48 |
+
os.chdir("..")
|
| 49 |
+
|
| 50 |
+
return {
|
| 51 |
+
"result": result,
|
| 52 |
+
"total_time": total_time,
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def get_solution_code(day: int, model: str) -> str:
|
| 57 |
+
"""Returns the solution code (as a string) for the given day and model."""
|
| 58 |
+
file_path = get_solution_file_path(day=day, model=model)
|
| 59 |
+
with open(file_path, "r") as file:
|
| 60 |
+
return file.read()
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def extract_solutions(df, output_file = "solutions.json"):
|
| 64 |
+
# TODO: better way of getting this?
|
| 65 |
+
solutions = {}
|
| 66 |
+
for day in range(1, 25):
|
| 67 |
+
sub_df = df[(df.model == "jerpint") & (df.day == day)]
|
| 68 |
+
part1, part2 = sub_df.result.to_list()[0].strip("\n").split("\n")
|
| 69 |
+
solutions[day] = [part1, part2]
|
| 70 |
+
|
| 71 |
+
with open(output_file, "w") as f:
|
| 72 |
+
json.dump(solutions, f, indent=2)
|
| 73 |
+
|
| 74 |
+
return solutions
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def evaluate_submissions(all_models, results_file = "results.csv", skip = True):
|
| 78 |
+
"""Runs the python code and collects their results"""
|
| 79 |
+
|
| 80 |
+
if os.path.exists(results_file):
|
| 81 |
+
df = pd.read_csv(results_file)
|
| 82 |
+
else:
|
| 83 |
+
df = pd.DataFrame(columns=["day", "model", "result", "total_time"])
|
| 84 |
+
|
| 85 |
+
# for day in range(1, 26):
|
| 86 |
+
for day in range(1, 11):
|
| 87 |
+
print("*" * 80)
|
| 88 |
+
print(f"Evaluating day {day}")
|
| 89 |
+
for provider in all_models:
|
| 90 |
+
for model in all_models[provider]:
|
| 91 |
+
print("-" * 80)
|
| 92 |
+
|
| 93 |
+
if df.loc[(df["day"] == day) & (df["model"] == model)].shape[0] > 0 and skip:
|
| 94 |
+
print(f"Skipping {provider} {model} for day {day} because it already exists")
|
| 95 |
+
continue
|
| 96 |
+
|
| 97 |
+
print(f"Evaluating day {day} with model {model}")
|
| 98 |
+
result = evaluate_submission(day, model)
|
| 99 |
+
df = pd.concat([df, pd.DataFrame({"day": [day], "model": [model], "result": [result["result"]], "total_time": [result["total_time"]]})], ignore_index=True)
|
| 100 |
+
|
| 101 |
+
df.to_csv("results.csv", index=False)
|
| 102 |
+
print("-" * 80)
|
| 103 |
+
print("*" * 80)
|
| 104 |
+
return df
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
all_models["human"] = ["jerpint"]
|
| 110 |
+
df = evaluate_submissions(all_models, results_file="results.csv")
|
| 111 |
+
|
| 112 |
+
# For now, only evaluate first 9 days
|
| 113 |
+
# TODO: All days
|
| 114 |
+
df = df[df.day < 10]
|
| 115 |
+
|
| 116 |
+
# Run once to save results
|
| 117 |
+
# solutions = extract_solutions(df)
|
| 118 |
+
|
| 119 |
+
with open("solutions.json") as f:
|
| 120 |
+
solutions = json.load(f)
|
| 121 |
+
|
| 122 |
+
def score_submissions(row):
|
| 123 |
+
result = row["result"]
|
| 124 |
+
day = row["day"]
|
| 125 |
+
solution = solutions[str(day)]
|
| 126 |
+
|
| 127 |
+
score_1 = solution[0] in result
|
| 128 |
+
score_2 = solution[1] in result
|
| 129 |
+
return [score_1, score_2]
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
df["scores"] = df.apply(score_submissions, axis=1)
|
| 133 |
+
|
| 134 |
+
df["part_1"] = df["scores"].apply(lambda x: x[0])
|
| 135 |
+
df["part_2"] = df["scores"].apply(lambda x: x[1])
|
| 136 |
+
|
| 137 |
+
for model in df.model.unique():
|
| 138 |
+
df_model = df[df.model == model]
|
| 139 |
+
silver_stars = df_model.part_1.sum()
|
| 140 |
+
gold_stars = df_model.part_2.sum()
|
| 141 |
+
total_stars = silver_stars + gold_stars
|
| 142 |
+
|
| 143 |
+
print(model, total_stars)
|