Spaces:
Running
Running
File size: 10,108 Bytes
011bd45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import asyncio
from dataclasses import dataclass, field
from agents import Runner, RunHooks
import threading
from typing import Any, Dict, Optional, List
import traceback
import time
from datetime import datetime
import numpy as np
import gradio as gr
from .config import logger, env
@dataclass
class RunnerStep:
"""Log entry for a single Runner step"""
timestamp: str
step_type: str
agent_name: str
turn_number: int
details: Dict[str, Any] = field(default_factory=dict)
duration_ms: Optional[float] = None
def __str__(self) -> str:
return f"[{self.timestamp}][T{self.turn_number}][{self.step_type}]: {self.details}"
@dataclass
class Message:
role: str
content: str
mode: str
metadata: Dict[str, Any] = field(default_factory=dict)
@classmethod
def user(cls, content: str) -> "Message":
return cls("user", content, '')
@classmethod
def system(cls, content: str) -> "Message":
return cls("system", content, '')
@classmethod
def tool(cls, content: str, **kwargs) -> "Message":
return cls("assistant", content, 'tool', kwargs)
@classmethod
def assistant(cls, content: str, mode='') -> "Message":
return cls("assistant", content, mode)
@classmethod
def tts(cls, content: str) -> "Message":
return cls("assistant", content, 'tts')
def to_dict(self) -> Dict[str, Any]:
result = {"role": self.role, "content": self.content}
if self.mode == "tool":
metadata = self.metadata.copy()
if title := metadata.get("title"):
metadata["title"] = title.title()
result["metadata"] = metadata
return result
@dataclass
class Snapshot:
sender: str
data: Any
status: str = 'done'
@property
def gr(self):
if isinstance(self.data, np.ndarray):
return gr.Image(self.data)
return self.data
class RunnerLoggerHooks(RunHooks):
"""Custom hooks to log every step of the Runner"""
def __init__(self, memory_instance):
super().__init__()
self.memory = memory_instance
self.current_turn = 0
self.turn_start_time = None
async def on_agent_start(self, context, agent):
self.current_turn += 1
self.turn_start_time = time.time()
self.memory.snapshots.append(Snapshot(
sender='agent',
data='Deciding tools',
status='pending'
))
step = RunnerStep(
timestamp=datetime.now().isoformat(),
step_type="turn_start",
agent_name=agent.name,
turn_number=self.current_turn,
details={"message": f"Starting turn {self.current_turn} with agent {agent.name}"}
)
self.memory.log_runner_step(step)
async def on_agent_end(self, context, agent, result):
if self.turn_start_time:
duration = (time.time() - self.turn_start_time) * 1000
else:
duration = None
step = RunnerStep(
timestamp=datetime.now().isoformat(),
step_type="agent_call",
agent_name=agent.name,
turn_number=self.current_turn,
details={"message": f"Agent {agent.name} completed", "result_type": type(result).__name__},
duration_ms=duration
)
self.memory.log_runner_step(step)
async def on_tool_start(self, context, agent, tool_call):
tool_name = getattr(tool_call, 'name', 'unknown')
tool_args = None
for attr in ['arguments', 'args', 'function', 'parameters']:
if hasattr(tool_call, attr):
tool_args = getattr(tool_call, attr)
break
self.memory.snapshots.append(Snapshot(
sender='agent',
status='pending',
data=f'Calling **{tool_name}**'
))
step = RunnerStep(
timestamp=datetime.now().isoformat(),
step_type="tool_call",
agent_name=agent.name,
turn_number=self.current_turn,
details={
"tool_name": tool_name,
"tool_args": tool_args,
"message": f"Calling tool {tool_name}"
}
)
self.memory.log_runner_step(step)
async def on_tool_end(self, context, agent, tool_call, result):
# Handle different tool_call object attributes safely
tool_name = getattr(tool_call, 'name', 'unknown')
step = RunnerStep(
timestamp=datetime.now().isoformat(),
step_type="tool_result",
agent_name=agent.name,
turn_number=self.current_turn,
details={
"tool_name": tool_name,
"result_length": len(str(result)) if result else 0,
"message": f"Tool {tool_name} completed"
}
)
self.memory.log_runner_step(step)
class Chat:
def __init__(self):
self.history = []
def append(self, message: Message):
self.history.append(message)
@property
def messages(self):
return [i.to_dict() for i in self.history]
class Memory:
def __init__(self, agent, limit: int = 200) -> None:
self.limit: int = limit
self.frames: list[Any] = []
self.snapshots: list[Any] = []
self.inputs: list[Any] = []
self.chat = Chat()
self.runner_steps: List[RunnerStep] = []
self.step_limit: int = 1000 # Keep last 1000 steps
self.logger_hooks: Optional[RunnerLoggerHooks] = None
self._chat_q: asyncio.Queue[Any] = asyncio.Queue()
self._input_q: asyncio.Queue[Any] = asyncio.Queue()
self._loop: Optional[asyncio.AbstractEventLoop] = None
self.is_waiting: bool = False
self.is_running: bool = False
self._last_frame_time: float = 0
self.setup(agent)
def log_runner_step(self, step: RunnerStep) -> None:
"""Log a runner step and maintain the step history limit"""
self.runner_steps.append(step)
logger.debug(f"[ 🛠️ ]{step}")
while len(self.runner_steps) > self.step_limit:
self.runner_steps.pop(0)
def enqueue(self, data: Any) -> None:
current_time = time.time()
if current_time-self._last_frame_time > 1.0 / env.fps:
self._last_frame_time = current_time
self.frames.append(data)
while len(self.frames) > self.limit:
self.frames.pop(0)
return self.snapshots.pop(0) if self.snapshots else None
def receive(self, text: str) -> None:
self.chat.append(Message.user(text))
self._loop.call_soon_threadsafe(self._chat_q.put_nowait, text)
def setup(self, agent) -> None:
"""Bind *agent* and spawn the background monitor threads."""
self.v_agent = agent
self.logger_hooks = RunnerLoggerHooks(self)
def _runner() -> None:
self._loop = asyncio.new_event_loop()
asyncio.set_event_loop(self._loop)
try:
self._loop.create_task(self._monitor_chat())
self._loop.run_forever()
finally:
self._loop.close()
threading.Thread(target=_runner, daemon=True).start()
async def _monitor_chat(self) -> None:
"""Process incoming chat messages, respecting the waiting gate."""
while True:
text = await self._chat_q.get()
logger.debug(f"Processing: {text}")
start_step = RunnerStep(
timestamp=datetime.now().isoformat(),
step_type="processing_start",
agent_name=getattr(self.v_agent, 'name', 'unknown'),
turn_number=0,
details={"user_input": text}
)
self.log_runner_step(start_step)
try:
self.is_running = True
result = await Runner.run(
starting_agent=self.v_agent,
input=text,
context=self,
hooks=self.logger_hooks # Add our custom hooks here
)
self.is_running = False
# Log successful completion
success_step = RunnerStep(
timestamp=datetime.now().isoformat(),
step_type="final_output",
agent_name=getattr(self.v_agent, 'name', 'unknown'),
turn_number=self.logger_hooks.current_turn if self.logger_hooks else 0,
details={
"output_type": type(result.final_output).__name__,
"output_preview": str(result.final_output)[:100] + "..." if len(str(result.final_output)) > 100 else str(result.final_output)
}
)
self.log_runner_step(success_step)
except Exception as exc: # noqa: BLE001
self.is_running = False
full_traceback = traceback.format_exc()
logger.debug(f"Error in _monitor_chat: {exc}\n{full_traceback}")
# Log the error
error_step = RunnerStep(
timestamp=datetime.now().isoformat(),
step_type="error",
agent_name=getattr(self.v_agent, 'name', 'unknown'),
turn_number=self.logger_hooks.current_turn if self.logger_hooks else 0,
details={
"error_type": type(exc).__name__,
"error_message": str(exc),
"traceback": full_traceback
}
)
self.log_runner_step(error_step)
continue
final = result.final_output.split('</think>', 1)[-1]
self.chat.append(Message.assistant(final))
await asyncio.sleep(0)
|