Spaces:
Running
Running
File size: 13,109 Bytes
502af73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 |
/**
* ONNX Model Inferencer (Frontend/Backend Common)
*
* Platform-agnostic inference logic that accepts ONNX session from platform-specific code.
* No direct dependency on onnxruntime packages - uses dependency injection pattern.
*
* Adapted from Node.js test_inference.js for cross-platform use
* Provides causal language model inference using GPT-2 ONNX model
*/
/**
* Minimal ONNX Tensor interface (platform-agnostic)
*/
export interface OnnxTensor {
readonly data: number[] | Float32Array | Int32Array | BigInt64Array | Uint8Array;
readonly dims: readonly number[];
readonly type: string;
}
/**
* Minimal ONNX Session interface (platform-agnostic)
*/
export interface OnnxSession {
readonly inputNames: readonly string[];
readonly outputNames: readonly string[];
run(feeds: Record<string, OnnxTensor>): Promise<Record<string, OnnxTensor>>;
}
/**
* Tensor constructor interface (platform-specific)
*/
export interface TensorConstructor {
new (
type: string,
data: BigInt64Array | Float32Array | Int32Array | Uint8Array,
dims: number[]
): OnnxTensor;
}
/**
* Configuration for the inferencer
*/
export interface InferencerConfig {
vocabSize: number;
seqLen: number;
modelPath?: string; // Optional, for reference
}
/**
* Inference result containing generated tokens and metadata
*/
export interface InferenceResult {
tokens: number[];
text: string;
logits: Float32Array;
inferenceTime: number;
}
/**
* Evaluation mode inputs for tree attention
*/
export interface EvaluationInputs {
prefixIds: number[]; // Prefix sequence (causal context)
evaluatedIds: number[]; // Tokens to evaluate in tree
evaluatedMask: number[]; // Attention mask [m×m] flattened
}
/**
* Evaluation mode output
*/
export interface EvaluationOutput {
logits: Float32Array; // [m+1, vocab_size] flattened
numEvaluated: number; // m
}
/**
* Model Inferencer for Causal Language Model
* Compatible with both frontend (onnxruntime-web) and backend (onnxruntime-node)
*/
export class ModelInferencer {
private session: OnnxSession | null = null;
private config: InferencerConfig;
private TensorClass: TensorConstructor;
// TGN tokenizer: byte-level (0-255) + PAD(256) + START(257) + END(258)
private readonly PAD_TOKEN = 256;
private readonly START_TOKEN = 257;
private readonly END_TOKEN = 258;
constructor(TensorClass: TensorConstructor, config: Partial<InferencerConfig> = {}) {
this.TensorClass = TensorClass;
this.config = {
vocabSize: 259,
seqLen: 256,
...config
};
}
/**
* Set the inference session (created by platform-specific code)
*/
setSession(session: OnnxSession): void {
this.session = session;
console.log("[ModelInferencer] ✓ Session set successfully");
this.printModelInfo();
}
/**
* Run basic inference test
*/
async testBasicInference(): Promise<InferenceResult> {
if (!this.session) {
throw new Error("Inferencer not initialized. Call setSession() first.");
}
console.log("[ModelInferencer] Running basic inference test...");
const batchSize = 1;
const seqLen = this.config.seqLen;
// Create random input
const inputIds = this.createRandomInput(batchSize, seqLen);
const inputTensor = new this.TensorClass("int64", inputIds, [batchSize, seqLen]);
// Run inference
const startTime = performance.now();
const results = await this.session.run({ input_ids: inputTensor });
const inferenceTime = performance.now() - startTime;
// Get logits
const logits = results.logits;
// Validate output
this.validateOutput(logits, batchSize, seqLen);
// Get predictions
const predictions = this.getPredictions(logits.data as Float32Array, batchSize * seqLen);
// Convert tokens to text
const text = String.fromCharCode(...predictions.slice(0, 100));
console.log("[ModelInferencer] Inference completed:");
console.log(` Input shape: [${inputTensor.dims.join(", ")}]`);
console.log(` Output shape: [${logits.dims.join(", ")}]`);
console.log(` Output dtype: ${logits.type}`);
console.log(` Inference time: ${inferenceTime.toFixed(2)}ms`);
console.log(` Sample predictions: [${predictions.slice(0, 10).join(", ")}]`);
const logitsArray = Array.from(logits.data as Float32Array);
console.log(
` Logits range: [${Math.min(...logitsArray).toFixed(3)}, ${Math.max(...logitsArray).toFixed(3)}]`
);
return {
tokens: predictions,
text,
logits: logits.data as Float32Array,
inferenceTime
};
}
/**
* Generate tokens autoregressively from a prompt
*/
async generateText(prompt: string, numTokens: number = 10): Promise<InferenceResult> {
if (!this.session) {
throw new Error("Inferencer not initialized. Call setSession() first.");
}
console.log(`[ModelInferencer] Generating ${numTokens} tokens from prompt: "${prompt}"`);
// Convert prompt to token IDs (byte values)
const promptTokens = Array.from(prompt).map((c) => c.charCodeAt(0));
console.log(` Prompt tokens (${promptTokens.length}): [${promptTokens.join(", ")}]`);
// Start with prompt tokens
const sequence = [...promptTokens];
const times: number[] = [];
// Generate tokens
for (let i = 0; i < numTokens; i++) {
// Pad sequence to fixed length
const paddedSequence = this.padSequence(sequence, this.config.seqLen);
// Create input tensor
const inputIds = new BigInt64Array(paddedSequence.map((t) => BigInt(t)));
const inputTensor = new this.TensorClass("int64", inputIds, [1, this.config.seqLen]);
// Run inference
const startTime = performance.now();
const results = await this.session.run({ input_ids: inputTensor });
times.push(performance.now() - startTime);
// Get prediction at the last non-padded position
const logits = results.logits.data as Float32Array;
const lastPos = sequence.length - 1; // Position before padding
const offset = lastPos * this.config.vocabSize;
// Find token with highest logit
let maxIdx = 0;
let maxVal = logits[offset];
for (let j = 1; j < this.config.vocabSize; j++) {
if (logits[offset + j] > maxVal) {
maxVal = logits[offset + j];
maxIdx = j;
}
}
sequence.push(maxIdx);
// Stop if END token is generated
if (maxIdx === this.END_TOKEN) {
console.log(" Generated END token, stopping...");
break;
}
}
// Convert generated tokens to text
const generatedText = String.fromCharCode(...sequence);
const avgTime = times.reduce((a, b) => a + b, 0) / times.length;
console.log(`[ModelInferencer] Generation complete:`);
console.log(` Generated text: "${generatedText}"`);
console.log(` Token sequence (${sequence.length}): [${sequence.join(", ")}]`);
console.log(` Avg inference time: ${avgTime.toFixed(2)}ms`);
console.log(` Tokens/sec: ${(1000 / avgTime).toFixed(2)}`);
return {
tokens: sequence,
text: generatedText,
logits: new Float32Array(), // Not returning full logits for generation
inferenceTime: avgTime
};
}
/**
* Get model information
*/
getModelInfo(): { inputs: string[]; outputs: string[] } | null {
if (!this.session) return null;
return {
inputs: [...this.session.inputNames],
outputs: [...this.session.outputNames]
};
}
/**
* Get configuration
*/
getConfig(): InferencerConfig {
return this.config;
}
/**
* Run inference with token array input
* Returns raw logits as Float32Array
*/
async runInference(tokens: number[]): Promise<Float32Array> {
if (!this.session) {
throw new Error("Inferencer not initialized. Call setSession() first.");
}
const seqLen = this.config.seqLen;
// Prepend START_TOKEN to input
const tokensWithStart = [this.START_TOKEN, ...tokens];
// Pad to fixed length
const paddedTokens = new BigInt64Array(seqLen);
for (let i = 0; i < seqLen; i++) {
paddedTokens[i] =
i < tokensWithStart.length ? BigInt(tokensWithStart[i]) : BigInt(this.PAD_TOKEN);
}
// Create input tensor
const inputTensor = new this.TensorClass("int64", paddedTokens, [1, seqLen]);
// Run inference
const results = await this.session.run({ input_ids: inputTensor });
return results.logits.data as Float32Array;
}
/**
* Run tree attention inference (evaluation mode)
* For models exported with --evaluation flag
* @param inputs - Prefix, evaluated tokens, and attention mask
* @returns Logits for each evaluated position
*/
async runEvaluationInference(inputs: EvaluationInputs): Promise<EvaluationOutput> {
if (!this.session) {
throw new Error("Inferencer not initialized. Call setSession() first.");
}
const { prefixIds, evaluatedIds, evaluatedMask } = inputs;
const batchSize = 1;
const prefixLen = prefixIds.length;
const m = evaluatedIds.length;
// Convert to BigInt64Array for ONNX int64 tensors
const prefixIdsArray = new BigInt64Array(batchSize * prefixLen);
for (let i = 0; i < prefixLen; i++) {
prefixIdsArray[i] = BigInt(prefixIds[i]);
}
const evaluatedIdsArray = new BigInt64Array(batchSize * m);
for (let i = 0; i < m; i++) {
evaluatedIdsArray[i] = BigInt(evaluatedIds[i]);
}
// Mask is Float32Array
const maskArray = new Float32Array(m * m);
for (let i = 0; i < m * m; i++) {
maskArray[i] = evaluatedMask[i];
}
// Create ONNX tensors
const prefixIdsTensor = new this.TensorClass("int64", prefixIdsArray, [
batchSize,
prefixLen
]);
const evaluatedIdsTensor = new this.TensorClass("int64", evaluatedIdsArray, [batchSize, m]);
const evaluatedMaskTensor = new this.TensorClass("float32", maskArray, [1, m, m]);
// Run inference
const results = await this.session.run({
prefix_ids: prefixIdsTensor,
evaluated_ids: evaluatedIdsTensor,
evaluated_mask: evaluatedMaskTensor
});
// Extract logits
const logits = results.logits.data as Float32Array;
// Output shape: [batch, m+1, vocab_size]
// We return flattened array and num_evaluated for reshaping
return {
logits,
numEvaluated: m
};
}
/**
* Compute softmax for a single position's logits
* @param logits - Full logits array
* @param position - Which evaluated position (0 = last prefix, 1-m = evaluated tokens)
* @returns Probability distribution over vocabulary
*/
softmax(logits: Float32Array, position: number): Float32Array {
const vocabSize = this.config.vocabSize;
const offset = position * vocabSize;
const probs = new Float32Array(vocabSize);
// Find max for numerical stability
let maxLogit = -Infinity;
for (let i = 0; i < vocabSize; i++) {
maxLogit = Math.max(maxLogit, logits[offset + i]);
}
// Compute exp and sum
let sumExp = 0;
for (let i = 0; i < vocabSize; i++) {
probs[i] = Math.exp(logits[offset + i] - maxLogit);
sumExp += probs[i];
}
// Normalize
for (let i = 0; i < vocabSize; i++) {
probs[i] /= sumExp;
}
return probs;
}
/**
* Check if inferencer is ready
*/
isReady(): boolean {
return this.session !== null;
}
/**
* Destroy the session and free resources
*/
destroy(): void {
this.session = null;
console.log("[ModelInferencer] Session destroyed");
}
// Private helper methods
private printModelInfo(): void {
if (!this.session) return;
console.log("[ModelInferencer] Model Information:");
console.log(" Inputs:");
this.session.inputNames.forEach((name, i) => {
console.log(` [${i}] ${name}`);
});
console.log(" Outputs:");
this.session.outputNames.forEach((name, i) => {
console.log(` [${i}] ${name}`);
});
}
private createRandomInput(batchSize: number, seqLen: number): BigInt64Array {
const size = batchSize * seqLen;
const data = new BigInt64Array(size);
for (let i = 0; i < size; i++) {
data[i] = BigInt(Math.floor(Math.random() * this.config.vocabSize));
}
return data;
}
private padSequence(tokens: number[], targetLen: number): number[] {
const padded = [...tokens];
while (padded.length < targetLen) {
padded.push(this.PAD_TOKEN);
}
return padded.slice(0, targetLen); // Truncate if too long
}
private validateOutput(logits: OnnxTensor, batchSize: number, seqLen: number): void {
const expectedShape = [batchSize, seqLen, this.config.vocabSize];
if (logits.dims.length !== 3) {
throw new Error(`Expected 3D output, got ${logits.dims.length}D`);
}
if (
logits.dims[0] !== expectedShape[0] ||
logits.dims[1] !== expectedShape[1] ||
logits.dims[2] !== expectedShape[2]
) {
throw new Error(
`Shape mismatch! Expected [${expectedShape.join(", ")}], ` +
`got [${logits.dims.join(", ")}]`
);
}
if (logits.type !== "float32") {
throw new Error(`Expected float32 output, got ${logits.type}`);
}
}
private getPredictions(logitsData: Float32Array, numPositions: number): number[] {
const predictions: number[] = [];
for (let i = 0; i < numPositions; i++) {
let maxIdx = 0;
let maxVal = logitsData[i * this.config.vocabSize];
for (let j = 1; j < this.config.vocabSize; j++) {
const val = logitsData[i * this.config.vocabSize + j];
if (val > maxVal) {
maxVal = val;
maxIdx = j;
}
}
predictions.push(maxIdx);
}
return predictions;
}
}
|