File size: 9,185 Bytes
0d186b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc9a733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d186b4
 
 
 
 
 
 
 
fc9a733
0d186b4
 
fc9a733
 
0d186b4
fc9a733
 
 
0d186b4
fc9a733
 
 
 
 
 
 
0d186b4
 
 
 
 
 
 
 
fc9a733
0d186b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc9a733
 
 
 
 
 
 
 
 
 
 
 
 
0d186b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import { AutoModel, AutoProcessor, RawImage } from "@huggingface/transformers";
import { Client } from "@gradio/client";

// Reference the elements that we will need
const status = document.getElementById("status");
const container = document.getElementById("container");
const overlay = document.getElementById("overlay");
const canvas = document.getElementById("canvas");
const video = document.getElementById("video");
const thresholdSlider = document.getElementById("threshold");
const thresholdLabel = document.getElementById("threshold-value");
const sizeSlider = document.getElementById("size");
const sizeLabel = document.getElementById("size-value");
const scaleSlider = document.getElementById("scale");
const scaleLabel = document.getElementById("scale-value");

function setStreamSize(width, height) {
  video.width = canvas.width = Math.round(width);
  video.height = canvas.height = Math.round(height);
}

status.textContent = "Loading model...";

// Load model and processor
const model_id = "Xenova/gelan-c_all";
const model = await AutoModel.from_pretrained(model_id);
const processor = await AutoProcessor.from_pretrained(model_id);

// Set up controls
let scale = 0.5;
scaleSlider.addEventListener("input", () => {
  scale = Number(scaleSlider.value);
  setStreamSize(video.videoWidth * scale, video.videoHeight * scale);
  scaleLabel.textContent = scale;
});
scaleSlider.disabled = false;

let threshold = 0.80;
thresholdSlider.addEventListener("input", () => {
  threshold = Number(thresholdSlider.value);
  thresholdLabel.textContent = threshold.toFixed(2);
});
thresholdSlider.disabled = false;

let size = 128;
processor.feature_extractor.size = { shortest_edge: size };
sizeSlider.addEventListener("input", () => {
  size = Number(sizeSlider.value);
  processor.feature_extractor.size = { shortest_edge: size };
  sizeLabel.textContent = size;
});
sizeSlider.disabled = false;

status.textContent = "Ready";

const COLOURS = [
  "#EF4444", "#4299E1", "#059669", "#FBBF24", "#4B52B1", "#7B3AC2",
  "#ED507A", "#1DD1A1", "#F3873A", "#4B5563", "#DC2626", "#1852B4",
  "#18A35D", "#F59E0B", "#4059BE", "#6027A5", "#D63D60", "#00AC9B",
  "#E64A19", "#272A34",
];

// Function to send canvas image to Gradio API
// async function sendCanvasImageToAPI(canvas) {
//   return new Promise((resolve, reject) => {
//     canvas.toBlob(async (blob) => {
//       if (!blob) {
//         reject("Failed to get Blob from canvas");
//         return;
//       }

//       const file1 = new File([blob], "detected.png", { type: "image/png" });

//       try {
//         // Fetch image from URL and convert to Blob
//         const response = await fetch("https://qvnhhditkzzeudppuezf.supabase.co/storage/v1/object/public/post-images/post-images/1752289670997-kevan.jpg");
//         const frame2Blob = await response.blob();
//         const file2 = new File([frame2Blob], "frame2.jpg", { type: frame2Blob.type });

//         const client = await Client.connect("MiniAiLive/FaceRecognition-LivenessDetection-Demo");

//         // Send canvas image as frame1, URL image as frame2
//         const result = await client.predict("/face_compare", {
//           frame1: file1,
//           frame2: file2,
//         });
//         resolve(result);
//       } catch (err) {
//         reject(err);
//       }
//     }, "image/png");
//   });
// }

async function sendCanvasImageToAPI(canvas) {
  return new Promise((resolve, reject) => {
    canvas.toBlob(async (blob) => {
      if (!blob) {
        reject("Failed to get Blob from canvas");
        return;
      }

      const file = new File([blob], "detected.png", { type: "image/png" });

      try {
        const formData = new FormData();
        formData.append("image", file);

        const response = await fetch("http://localhost:8080/call-face-recognition", {
          method: "POST",
          body: formData,
        });

        if (!response.ok) {
          reject("Failed to send image: " + response.statusText);
          return;
        }

        const result = await response.text(); // or JSON if backend returns JSON
        resolve(result);
      } catch (err) {
        reject(err);
      }
    }, "image/png");
  });
}


// Variables to store current bounding box and label elements
let currentBoxElement = null;
let currentLabelElement = null;

let hasSent = false; // Flag to send API request only once per detection

var color = "yellow";
var text = "Verifying..."
// Render a bounding box and label on the image
function renderBox([xmin, ymin, xmax, ymax, score, id], [w, h]) {
  if (score < threshold) return; // Skip boxes with low confidence



  // Create bounding box div
  let boxElement = document.createElement("div");
  boxElement.className = "bounding-box";
  Object.assign(boxElement.style, {
    borderColor: color,
    left: (100 * xmin) / w + "%",
    top: (100 * ymin) / h + "%",
    width: (100 * (xmax - xmin)) / w + "%",
    height: (100 * (ymax - ymin)) / h + "%",
  });

  // Create label span
  let labelElement = document.createElement("span");
  labelElement.textContent = text;
  labelElement.className = "bounding-box-label";
  labelElement.style.backgroundColor = color;
  labelElement.style.color = "black";

  boxElement.appendChild(labelElement);
  overlay.appendChild(boxElement);

  // Store references globally for updating after API response
  currentBoxElement = boxElement;
  currentLabelElement = labelElement;

  // Send image to the API on first detection
  if (!hasSent) {
    hasSent = true;
    sendCanvasImageToAPI(canvas)
      .then((response) => {
        
        const responseObj = JSON.parse(response); 
        const confidenceStr = responseObj.result; // "0.982708"

        // Extract decimal part only:
        // const decimalPart = confidenceStr.slice(confidenceStr.indexOf('.') + 1);
        // console.log(decimalPart);  // e.g., "982708"

        // Convert to float for comparison
        const decimalNumber = parseFloat(confidenceStr);
        console.log(decimalNumber);
        

        if (decimalNumber !== null && decimalNumber > 0.80) {
          // --- MODIFICATION START ---
          // Instead of removing and recreating the box, just update its style.
          color = "green";
          text = "Verified Successfully! " + decimalNumber;
          currentLabelElement.style.color = "black"; // Or "white" if it looks better

          console.log("Updated box to green");
          // --- MODIFICATION END ---
          
        } else if (decimalNumber !== null) {
          // Not identified case - update existing box and label to red
          color = "red";
          text = "Failed to verify"
          currentLabelElement.style.color = "black"; // Or "white" if it looks better

          console.log("Updated box to red");
        } else {
          // Fallback yellow verifying state
          currentLabelElement.textContent = "Verifying...";
          currentLabelElement.style.backgroundColor = "yellow";
          currentLabelElement.style.color = "black";
          currentBoxElement.style.borderColor = "yellow";

          console.log("Fallback to yellow");
        }
      })
      .catch((err) => {
        console.error("Error sending image to API:", err);
        // On error, fallback to yellow verifying
        if (currentLabelElement && currentBoxElement) {
          currentLabelElement.textContent = "Verifying...";
          currentLabelElement.style.backgroundColor = "yellow";
          currentLabelElement.style.color = "black";
          currentBoxElement.style.borderColor = "yellow";
        }
      });
  }
}

let isProcessing = false;
let previousTime;
const context = canvas.getContext("2d", { willReadFrequently: true });

function updateCanvas() {
  const { width, height } = canvas;
  context.drawImage(video, 0, 0, width, height);

  if (!isProcessing) {
    isProcessing = true;
    (async function () {
      const pixelData = context.getImageData(0, 0, width, height).data;
      const image = new RawImage(pixelData, width, height, 4);

      const inputs = await processor(image);
      const { outputs } = await model(inputs);

      overlay.innerHTML = "";

      const sizes = inputs.reshaped_input_sizes[0].reverse();
      outputs.tolist().forEach((x) => renderBox(x, sizes));

      if (previousTime !== undefined) {
        const fps = 1000 / (performance.now() - previousTime);
        status.textContent = `FPS: ${fps.toFixed(2)}`;
      }
      previousTime = performance.now();
      isProcessing = false;
    })();
  }

  window.requestAnimationFrame(updateCanvas);
}

// Start the video stream
navigator.mediaDevices
  .getUserMedia({ video: true })
  .then((stream) => {
    video.srcObject = stream;
    video.play();

    const videoTrack = stream.getVideoTracks()[0];
    const { width, height } = videoTrack.getSettings();

    setStreamSize(width * scale, height * scale);

    const ar = width / height;
    const [cw, ch] = ar > 720 / 405 ? [720, 720 / ar] : [405 * ar, 405];
    container.style.width = `${cw}px`;
    container.style.height = `${ch}px`;

    window.requestAnimationFrame(updateCanvas);
  })
  .catch((error) => {
    alert(error);
  });