File size: 14,434 Bytes
3bad252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
Streamlit Web Application for Vibe-to-Attribute Clothing Recommendation System
"""

import streamlit as st
import sys
import os
from typing import Dict, Any, List


try:
    from recommendation_system import VibeRecommendationSystem
except ImportError as e:
    st.error(f"Failed to import recommendation system: {e}")
    st.stop()

# Configure Streamlit page
st.set_page_config(
    page_title="Vibe Fashion Recommender",
    page_icon="πŸ‘—",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS for better styling
st.markdown("""
<style>
    .main-header {
        font-size: 3rem;
        font-weight: bold;
        text-align: center;
        background: linear-gradient(45deg, #FF6B6B, #4ECDC4);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        margin-bottom: 2rem;
    }
    .subtitle {
        text-align: center;
        font-size: 1.2rem;
        color: #666;
        margin-bottom: 3rem;
    }
    .recommendation-box {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
        color: white;
        padding: 2rem;
        border-radius: 15px;
        margin: 2rem 0;
    }
</style>
""", unsafe_allow_html=True)

# Initialize session state for conversation
if 'recommendation_system' not in st.session_state:
    with st.spinner("πŸ”„ Initializing Fashion Recommendation System..."):
        try:
            st.session_state.recommendation_system = VibeRecommendationSystem()
            st.session_state.system_initialized = True
        except Exception as e:
            st.session_state.system_initialized = False
            st.error(f"Failed to initialize system: {e}")

# Initialize conversation state
if 'conversation_history' not in st.session_state:
    st.session_state.conversation_history = []
if 'pending_attributes' not in st.session_state:
    st.session_state.pending_attributes = {}
if 'missing_attributes' not in st.session_state:
    st.session_state.missing_attributes = []
if 'conversation_active' not in st.session_state:
    st.session_state.conversation_active = False

def main():
    """Main Streamlit application."""
    
    # Header
    st.markdown('<h1 class="main-header">οΏ½οΏ½ Vibe Fashion Recommender</h1>', unsafe_allow_html=True)
    st.markdown('<p class="subtitle">Transform your style ideas into perfect outfit recommendations using AI</p>', unsafe_allow_html=True)
    
    # Check if system is initialized
    if not st.session_state.get('system_initialized', False):
        st.error("❌ System failed to initialize. Please refresh the page.")
        return
    
    # Sidebar - System Status Only
    with st.sidebar:
        st.header("πŸ“Š System Status")
        if st.button("Check Status"):
            status = st.session_state.recommendation_system.get_system_status()
            for component, status_msg in status.items():
                if "Ready" in status_msg or "Loaded" in status_msg:
                    st.success(f"βœ… {component}: {status_msg}")
                else:
                    st.warning(f"⚠️ {component}: {status_msg}")
        
        st.markdown("---")
        st.markdown("**πŸ’‘ Tip:** Tell me your size and budget in the conversation!")
        st.markdown("*Example: 'I need a size M dress under $100 for a party'*")
    

    
    # Chat interface for conversation
    st.header("πŸ’¬ Fashion Chat")
    
    # Display conversation history
    if st.session_state.conversation_history:
        st.markdown("**Conversation History:**")
        chat_container = st.container()
        with chat_container:
            for i, exchange in enumerate(st.session_state.conversation_history):
                # User message
                st.markdown(f"**You:** {exchange['user']}")
                # Assistant response
                if exchange.get('assistant'):
                    st.markdown(f"**Assistant:** {exchange['assistant']}")
                if i < len(st.session_state.conversation_history) - 1:
                    st.markdown("---")
    
    # Current pending context
    if st.session_state.pending_attributes:
        st.info(f"πŸ’­ I remember: {', '.join([f'{k}: {v}' for k, v in st.session_state.pending_attributes.items()])}")
    
    # User input with form to handle clearing better
    with st.form(key="user_input_form", clear_on_submit=True):
        user_input = st.text_input(
            "Continue the conversation:" if st.session_state.conversation_active else "What are you looking for?",
            placeholder="Tell me more details..." if st.session_state.missing_attributes else "e.g., I want something elegant for a dinner date...",
            key="user_input_field"
        )
        send_button = st.form_submit_button("πŸ’¬ Send", type="primary")
    
    # Buttons
    col1, col2 = st.columns([1, 1])
    
    with col1:
        if st.button("πŸ”„ New Request"):
            # Reset conversation
            st.session_state.conversation_history = []
            st.session_state.pending_attributes = {}
            st.session_state.missing_attributes = []
            st.session_state.conversation_active = False
            st.rerun()
    
    with col2:
        if st.button("✨ Get Final Recommendations"):
            if st.session_state.pending_attributes:
                get_final_recommendations(st.session_state.pending_attributes, {})
            else:
                st.warning("Please start a conversation first!")
    
    # Process user input (now triggered by form submit)
    if send_button and user_input.strip():
        process_user_input(user_input, {})

def process_user_input(user_input: str, user_prefs: Dict[str, Any]):
    """Process user input in conversational context."""
    
    # Combine current input with pending attributes to form complete query
    if st.session_state.pending_attributes:
        # Build context from previous conversation
        context_parts = []
        for key, value in st.session_state.pending_attributes.items():
            if isinstance(value, list):
                context_parts.append(f"{key}: {', '.join(value)}")
            else:
                context_parts.append(f"{key}: {value}")
        
        # Combine context with new input
        combined_query = f"Previous context: {'; '.join(context_parts)}. New information: {user_input}"
    else:
        combined_query = user_input
    
    with st.spinner("πŸ€– Processing your message..."):
        try:
            # Get recommendations with combined context and pending attributes
            # Pass pending attributes as user preferences (highest priority)
            merged_prefs = user_prefs.copy()
            merged_prefs.update(st.session_state.pending_attributes)
            
            result = st.session_state.recommendation_system.get_recommendations(
                user_query=combined_query,
                user_preferences=merged_prefs
            )
            
            # Add to conversation history
            exchange = {"user": user_input}
            
            if result['success']:
                # Got successful recommendations
                exchange["assistant"] = result['recommendation']
                st.session_state.conversation_history.append(exchange)
                st.session_state.conversation_active = False
                st.session_state.pending_attributes = {}
                st.session_state.missing_attributes = []
                
                # Display recommendations
                display_recommendations(result)
                
            else:
                # Need more information - maintain conversation state
                exchange["assistant"] = result['message']
                st.session_state.conversation_history.append(exchange)
                st.session_state.conversation_active = True
                st.session_state.missing_attributes = result.get('missing_attributes', [])
                
                # Update pending attributes with what we know so far
                if 'final_attributes' in result:
                    st.session_state.pending_attributes.update(result['final_attributes'])
                
                # Extract new attributes from current input only (not combined query)
                try:
                    # Analyze just the current user input to extract new attributes
                    nlp_result = st.session_state.recommendation_system.nlp_analyzer.analyze_query(user_input)
                    if nlp_result and 'extracted_attributes' in nlp_result:
                        extracted = nlp_result['extracted_attributes']
                        for key, value in extracted.items():
                            if value and value not in [None, "", []]:
                                st.session_state.pending_attributes[key] = value
                                print(f"βœ“ Updated pending attributes from current input: {key} = {value}")
                                # Show debug info for size and budget specifically
                                if key in ['size', 'budget']:
                                    print(f"  {key.title()} type: {type(value)}, value: {repr(value)}")
                except Exception as e:
                    print(f"Error extracting attributes from current input: {e}")
                    pass
                
                # Show the assistant's response
                st.info(f"πŸ’¬ **Assistant:** {exchange['assistant']}")
                
                # Show follow-up questions
                if 'suggested_questions' in result:
                    st.markdown("**To help me better, please answer:**")
                    for question in result['suggested_questions']:
                        st.write(f"β€’ {question}")
                
                st.rerun()
                
        except Exception as e:
            st.error(f"❌ An error occurred: {str(e)}")

def get_final_recommendations(pending_attributes: Dict[str, Any], user_prefs: Dict[str, Any]):
    """Get final recommendations with accumulated attributes."""
    
    # Build a query from accumulated attributes
    query_parts = []
    for key, value in pending_attributes.items():
        if isinstance(value, list):
            query_parts.append(f"{key}: {', '.join(value)}")
        else:
            query_parts.append(f"{key}: {value}")
    
    combined_query = f"Find clothing with: {'; '.join(query_parts)}"
    
    with st.spinner("πŸ€– Getting your final recommendations..."):
        try:
            result = st.session_state.recommendation_system.get_recommendations(
                user_query=combined_query,
                user_preferences=user_prefs
            )
            
            if result['success']:
                # Reset conversation state
                st.session_state.conversation_active = False
                st.session_state.pending_attributes = {}
                st.session_state.missing_attributes = []
                
                # Display recommendations
                display_recommendations(result)
            else:
                st.error(f"Still missing information: {result.get('message', 'Unknown error')}")
                
        except Exception as e:
            st.error(f"❌ An error occurred: {str(e)}")

def get_recommendations(user_query: str, user_prefs: Dict[str, Any]):
    """Get and display recommendations (legacy function for compatibility)."""
    
    with st.spinner("πŸ€– Analyzing your request and finding perfect matches..."):
        try:
            result = st.session_state.recommendation_system.get_recommendations(
                user_query=user_query,
                user_preferences=user_prefs
            )
            
            display_recommendations(result)
            
        except Exception as e:
            st.error(f"❌ An error occurred: {str(e)}")

def display_recommendations(result: Dict[str, Any]):
    """Display the recommendation results."""
    
    if result['success']:
        # Main recommendation
        st.markdown('<div class="recommendation-box">', unsafe_allow_html=True)
        st.markdown("### πŸŽ‰ Your Perfect Match!")
        st.markdown(result['recommendation'])
        st.markdown('</div>', unsafe_allow_html=True)
        
        # Product details
        if result['products']:
            st.header("πŸ‘• Product Details")
            
            for i, product in enumerate(result['products']):
                with st.expander(f"πŸ›οΈ {product['name']} - ${product['price']}", expanded=(i==0)):
                    col1, col2 = st.columns(2)
                    
                    with col1:
                        st.write(f"**Category:** {product['category']}")
                        st.write(f"**Price:** ${product['price']}")
                        if product.get('fit'):
                            st.write(f"**Fit:** {product['fit']}")
                        if product.get('fabric'):
                            st.write(f"**Fabric:** {product['fabric']}")
                    
                    with col2:
                        if product.get('color_or_print'):
                            st.write(f"**Color/Print:** {product['color_or_print']}")
                        st.write(f"**Available Sizes:** {product['available_sizes']}")
                        if product.get('sleeve_length'):
                            st.write(f"**Sleeve Length:** {product['sleeve_length']}")
                        if product.get('neckline'):
                            st.write(f"**Neckline:** {product['neckline']}")
                        if product.get('length'):
                            st.write(f"**Length:** {product['length']}")
                        if product.get('pant_type'):
                            st.write(f"**Pant Type:** {product['pant_type']}")
                        if product.get('occasion'):
                            st.write(f"**Occasion:** {product['occasion']}")
                    
                    if product.get('description'):
                        st.write(f"**Description:** {product['description']}")
    
    else:
        st.error(result['message'])
        if 'suggested_questions' in result:
            st.markdown("**Please help me by answering:**")
            for question in result['suggested_questions']:
                st.write(f"β€’ {question}")

if __name__ == "__main__":
    main()