Spaces:
Sleeping
Sleeping
File size: 9,049 Bytes
08da844 5417d7d 08da844 03f6d77 08da844 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
import os
import streamlit as st
import numpy as np
import time
from sentence_transformers import SentenceTransformer
import datetime
import feedparser
from huggingface_hub import hf_hub_download
import faiss, pickle
import aiohttp
import asyncio
import sqlite3
# -------------------
# Load prebuilt index
# -------------------
def init_cache_db():
conn = sqlite3.connect("query_cache.db")
c = conn.cursor()
c.execute("""
CREATE TABLE IF NOT EXISTS cache (
id INTEGER PRIMARY KEY AUTOINCREMENT,
query TEXT UNIQUE,
answer TEXT,
embedding BLOB,
frequency INTEGER DEFAULT 1
)
""")
conn.commit()
return conn
cache_conn = init_cache_db()
def store_in_cache(query, answer, embedding):
c = cache_conn.cursor()
c.execute("""
INSERT OR REPLACE INTO cache (query, answer, embedding, frequency)
VALUES (?, ?, ?, COALESCE(
(SELECT frequency FROM cache WHERE query=?), 0
) + 1)
""",
(query, answer, embedding.tobytes(), query)
)
cache_conn.commit()
def search_cache(query, embed_model, threshold=0.85):
q_emb = embed_model.encode([query], convert_to_numpy=True)[0]
c = cache_conn.cursor()
c.execute("SELECT query, answer, embedding, frequency FROM cache")
rows = c.fetchall()
best_sim = -1
best_row = None
for qry, ans, emb_blob, freq in rows:
emb = np.frombuffer(emb_blob, dtype=np.float32).reshape(-1)
sim = np.dot(q_emb, emb) / (np.linalg.norm(q_emb) * np.linalg.norm(emb))
if sim > threshold and sim > best_sim:
best_sim = sim
best_row = (qry, ans, freq)
if best_row:
return best_row[1] # return only answer
return None
# -------------------
# Load FAISS index + metadata
# -------------------
@st.cache_resource
def load_index():
faiss_path = hf_hub_download(
repo_id="krishnasimha/health-chatbot-data",
filename="health_index.faiss",
repo_type="dataset"
)
pkl_path = hf_hub_download(
repo_id="krishnasimha/health-chatbot-data",
filename="health_metadata.pkl",
repo_type="dataset"
)
index = faiss.read_index(faiss_path)
with open(pkl_path, "rb") as f:
metadata = pickle.load(f)
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
return index, metadata, embed_model
index, metadata, embed_model = load_index()
# -------------------
# FAISS Benchmark
# -------------------
def benchmark_faiss(n_queries=100, k=3):
queries = ["What is diabetes?", "How to prevent malaria?", "Symptoms of dengue?"]
query_embs = embed_model.encode(queries, convert_to_numpy=True)
times = []
for _ in range(n_queries):
q = query_embs[np.random.randint(0, len(query_embs))].reshape(1, -1)
start = time.time()
D, I = index.search(q, k)
times.append(time.time() - start)
avg_time = np.mean(times) * 1000
st.sidebar.write(f"β‘ FAISS Benchmark: {avg_time:.2f} ms/query over {n_queries} queries")
# -------------------
# Chat session management
# -------------------
if "chats" not in st.session_state:
st.session_state.chats = {}
if "current_chat" not in st.session_state:
st.session_state.current_chat = "New Chat 1"
st.session_state.chats["New Chat 1"] = [
{"role": "system", "content": "You are a helpful public health awareness chatbot."}
]
st.sidebar.header("Chat Manager")
if st.sidebar.button("β New Chat"):
chat_count = len(st.session_state.chats) + 1
new_chat_name = f"New Chat {chat_count}"
st.session_state.chats[new_chat_name] = [
{"role": "system", "content": "You are a helpful public health awareness chatbot."}
]
st.session_state.current_chat = new_chat_name
benchmark_faiss()
# -------------------
# Most Asked Questions
# -------------------
def get_top_cached_queries(limit=5):
c = cache_conn.cursor()
c.execute("""
SELECT query, frequency FROM cache
ORDER BY frequency DESC
LIMIT ?
""", (limit,))
return c.fetchall()
st.sidebar.subheader("π₯ Most Asked Questions")
top_qs = get_top_cached_queries()
for q, freq in top_qs:
st.sidebar.write(f"**{q}** β used {freq} times")
# -------------------
# Chat selector
# -------------------
chat_list = list(st.session_state.chats.keys())
selected_chat = st.sidebar.selectbox(
"Your chats:", chat_list, index=chat_list.index(st.session_state.current_chat), key="chat_select"
)
st.session_state.current_chat = selected_chat
new_name = st.sidebar.text_input("Rename Chat:", st.session_state.current_chat)
if new_name and new_name != st.session_state.current_chat:
if new_name not in st.session_state.chats:
st.session_state.chats[new_name] = st.session_state.chats.pop(st.session_state.current_chat)
st.session_state.current_chat = new_name
# -------------------
# RSS News Fetcher (async)
# -------------------
RSS_URL = "https://news.google.com/rss/search?q=health+disease+awareness&hl=en-IN&gl=IN&ceid=IN:en"
async def fetch_rss_url(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as resp:
return await resp.text()
def fetch_news():
raw_xml = asyncio.run(fetch_rss_url(RSS_URL))
feed = feedparser.parse(raw_xml)
articles = []
for entry in feed.entries[:5]:
articles.append({
"title": entry.title,
"link": entry.link,
"published": entry.published
})
return articles
def update_news_hourly():
now = datetime.datetime.now()
if "last_news_update" not in st.session_state or (now - st.session_state.last_news_update).seconds > 3600:
st.session_state.last_news_update = now
st.session_state.news_articles = fetch_news()
# -------------------
# Async Together API
# -------------------
async def async_together_chat(messages):
url = "https://api.together.xyz/v1/chat/completions"
headers = {
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}",
"Content-Type": "application/json",
}
payload = {
"model": "deepseek-ai/DeepSeek-V3",
"messages": messages,
}
async with aiohttp.ClientSession() as session:
async with session.post(url, headers=headers, json=payload) as resp:
result = await resp.json()
return result["choices"][0]["message"]["content"]
# -------------------
# Query function
# -------------------
def retrieve_answer(query, k=3):
# 1οΈβ£ Try fetch from cache
cached_answer = search_cache(query, embed_model)
if cached_answer:
st.sidebar.success("β‘ Retrieved from cache")
return cached_answer, [] # no FAISS sources
# 2οΈβ£ If no cache β normal FAISS pipeline
query_emb = embed_model.encode([query], convert_to_numpy=True)
D, I = index.search(query_emb, k)
retrieved = [metadata["texts"][i] for i in I[0]]
sources = [metadata["sources"][i] for i in I[0]]
context = "\n".join(retrieved)
user_message = {
"role": "user",
"content": f"Answer based on the context below:\n\n{context}\n\nQuestion: {query}"
}
st.session_state.chats[st.session_state.current_chat].append(user_message)
answer = asyncio.run(async_together_chat(st.session_state.chats[st.session_state.current_chat]))
# 3οΈβ£ Save the new query + embedding + answer into cache
store_in_cache(query, answer, query_emb[0])
st.session_state.chats[st.session_state.current_chat].append({"role": "assistant", "content": answer})
return answer, sources
# -------------------
# Background news task
# -------------------
async def background_news_updater():
while True:
st.session_state.news_articles = fetch_news()
await asyncio.sleep(3600) # refresh every hour
if "news_task" not in st.session_state:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
st.session_state.news_task = loop.create_task(background_news_updater())
# -------------------
# Streamlit UI
# -------------------
st.title(st.session_state.current_chat)
update_news_hourly()
st.subheader("π° Latest Health Updates")
if "news_articles" in st.session_state:
for art in st.session_state.news_articles:
st.markdown(f"**{art['title']}** \n[Read more]({art['link']}) \n*Published: {art['published']}*")
st.write("---")
user_query = st.text_input("Ask me about health, prevention, or awareness:")
if user_query:
with st.spinner("Searching knowledge base..."):
answer, sources = retrieve_answer(user_query)
st.write("### π‘ Answer")
st.write(answer)
st.write("### π Sources")
for src in sources:
st.write(f"- {src}")
for msg in st.session_state.chats[st.session_state.current_chat]:
if msg["role"] == "user":
st.write(f"π§ **You:** {msg['content']}")
elif msg["role"] == "assistant":
st.write(f"π€ **Bot:** {msg['content']}")
|