File size: 3,859 Bytes
cb26699
 
 
 
 
 
 
5fa0bf0
cb26699
5fa0bf0
cb26699
 
 
 
 
5fa0bf0
 
 
 
cb26699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fa0bf0
 
 
cb26699
 
 
 
 
5fa0bf0
cb26699
 
5fa0bf0
cb26699
 
 
 
5fa0bf0
cb26699
5fa0bf0
 
 
 
 
 
cb26699
 
 
 
31ea5d8
011f2fa
31ea5d8
b0928d2
 
 
 
011f2fa
29be757
5fa0bf0
cb26699
 
5fa0bf0
 
 
 
 
591049b
5fa0bf0
 
 
 
 
cb26699
5fa0bf0
cb26699
 
fdea0db
cb26699
 
5fa0bf0
5a8ba2c
5fa0bf0
 
cb26699
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import gradio as gr
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import torch
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation
import time

MODEL_ID = "nvidia/segformer-b2-finetuned-cityscapes-1024-1024"
processor = AutoImageProcessor.from_pretrained(MODEL_ID)
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID)

def ade_palette():
    return [
        [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153],
        [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152],
        [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70],
        [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32]
    ]

labels_list = []
with open("labels.txt", "r", encoding="utf-8") as fp:
    for line in fp:
        labels_list.append(line.rstrip("\n"))

colormap = np.asarray(ade_palette(), dtype=np.uint8)

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")
    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]

def draw_plot(pred_img, seg_np):
    fig = plt.figure(figsize=(20, 15))
    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')

    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg_np.astype("uint8"))
    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
    ax.yaxis.tick_right()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=25)
    return fig


def run_inference(input_img, alpha=0.5):
    start_time = time.time()
    img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img
    if img.mode != "RGB":
        img = img.convert("RGB")

    inputs = processor(images=img, return_tensors="pt")

    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits

    upsampled = torch.nn.functional.interpolate(
        logits, size=img.size[::-1], mode="bilinear", align_corners=False
    )
    seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8)

    color_seg = colormap[seg]

    # alpha ๋ณ€์ˆ˜๋ฅผ ์‚ฌ์šฉํ•ด ํˆฌ๋ช…๋„ ์กฐ์ ˆ
    image_weight = 1.0 - alpha
    overlay_weight = alpha
    pred_img = (np.array(img) * image_weight + color_seg * overlay_weight).astype(np.uint8)

    fig = draw_plot(pred_img, seg)
    return fig

custom_theme = gr.themes.Soft(
    primary_hue="emerald", secondary_hue="teal", neutral_hue="slate"
).set(
    body_background_fill="#f9fafb",
    body_text_color="#1f2937",
    button_primary_background_fill="#10b981",
    button_primary_text_color="#ffffff",
    block_background_fill="#ffffff"
)

demo = gr.Interface(
    fn=run_inference,
    inputs=[
        gr.Image(type="numpy", label="์ด๋ฏธ์ง€ ์ž…๋ ฅ"),
        gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="ํˆฌ๋ช…๋„ ์กฐ์ ˆ")
    ],
    outputs=gr.Plot(label="๊ฒฐ๊ณผ"),
    examples=[
        ["city1.png", 0.5],
        ["city2.png", 0.5],
        ["city3.jpg", 0.5],
        ["city4.jpeg", 0.5],
        ["city5.jpg", 0.5]
    ],

    flagging_mode="never",
    cache_examples=False,
    theme=custom_theme
)

title = "City Segment"
description = ("""segformer-b2๋ชจ๋ธ์„ ์ด์šฉ ๋„์‹œ ์ด๋ฏธ์ง€ ๋ถ„ํ•  ์‹œ๊ฐ.<br>
              ์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•˜๋ฉด ๋„๋กœ, ๊ฑด๋ฌผ, ์ฐจ๋Ÿ‰, ์‚ฌ๋žŒ ๋“ฑ ๊ฐ์ฒด๋ณ„๋กœ ์ƒ‰์ƒ์œผ๋กœ ๊ตฌ๋ถ„ํ•ด์ค๋‹ˆ๋‹ค.""")

if __name__ == "__main__":
    demo.launch()