kuldeepshinde1405 commited on
Commit
6f61fe8
·
verified ·
1 Parent(s): 73cba89

requirements.txt

Browse files

gradio
numpy
torch

Files changed (1) hide show
  1. app.py +165 -0
app.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import numpy as np
3
+
4
+ # A placeholder function to simulate the Authencoder model's prediction.
5
+ # Replace this with your actual model's prediction function.
6
+ # This function demonstrates how to take all the inputs and return an output.
7
+ # You will need to load your model here and perform the actual inference.
8
+ def predict_quality(
9
+ herb_name,
10
+ temperature,
11
+ humidity,
12
+ storage_time,
13
+ light_exposure,
14
+ soil_ph,
15
+ soil_moisture,
16
+ soil_nitrogen,
17
+ soil_phosphorus,
18
+ soil_potassium,
19
+ soil_organic_carbon,
20
+ heavy_metal_pb,
21
+ heavy_metal_as,
22
+ heavy_metal_hg,
23
+ heavy_metal_cd,
24
+ aflatoxin_total,
25
+ pesticide_residue_total,
26
+ moisture_content,
27
+ essential_oil,
28
+ chlorophyll_index,
29
+ leaf_spots_count,
30
+ discoloration_index,
31
+ total_bacterial_count,
32
+ total_fungal_count,
33
+ e_coli_present,
34
+ salmonella_present,
35
+ dna_marker_authenticity
36
+ ):
37
+ """
38
+ This function simulates a model's prediction based on the input parameters.
39
+ In a real application, you would load and use your Authencoder model here.
40
+
41
+ Args:
42
+ All the parameters from the Gradio form.
43
+
44
+ Returns:
45
+ A string with a simulated quality prediction.
46
+ """
47
+ # Placeholder logic:
48
+ # This is a dummy response. Replace this with your model's actual
49
+ # inference code. For example:
50
+ #
51
+ # from transformers import pipeline
52
+ # model = pipeline("your-model-task", model="your-model-id")
53
+ # result = model(your_processed_input_data)
54
+ #
55
+ # For this example, we'll just check a few parameters to give a meaningful
56
+ # placeholder output.
57
+
58
+ quality_score = np.random.uniform(70, 100)
59
+
60
+ # Check for critical parameters
61
+ if e_coli_present == "Yes" or salmonella_present == "Yes":
62
+ return f"Warning: E. coli or Salmonella detected. Quality is 'Unsafe'."
63
+
64
+ if heavy_metal_cd > 0.5 or heavy_metal_hg > 0.5:
65
+ return f"Warning: High heavy metal content. Quality is 'Poor'."
66
+
67
+ if moisture_content > 10 or total_bacterial_count > 1000:
68
+ quality_score -= 20
69
+
70
+ if dna_marker_authenticity == "No":
71
+ return f"Warning: Authenticity not confirmed by DNA marker. Quality is 'Unverified'."
72
+
73
+ return f"Based on the provided data, the quality of {herb_name} is 'Good' with a score of {quality_score:.2f}/100."
74
+
75
+ # Create the Gradio Interface
76
+ with gr.Blocks(title="Authencoder Herb Quality Assessment") as app:
77
+ gr.Markdown(
78
+ """
79
+ # Authencoder: Herb Quality Assessment
80
+ This application simulates a system for assessing the quality and authenticity of herbs based on various parameters.
81
+ **Note**: This is a demo. Please replace the `predict_quality` function with your actual model's inference logic.
82
+ """
83
+ )
84
+ with gr.Row():
85
+ with gr.Column():
86
+ gr.Markdown("### Herb Details and Environmental Factors")
87
+ herb_name = gr.Textbox(label="Herb Name", placeholder="e.g., Turmeric, Ginseng")
88
+ temperature = gr.Slider(minimum=-10, maximum=50, step=0.1, label="Temperature ($^\circ C$)", value=25)
89
+ humidity = gr.Slider(minimum=0, maximum=100, step=0.1, label="Humidity (%)", value=60)
90
+ storage_time = gr.Number(label="Storage Time (Days)", value=30)
91
+ light_exposure = gr.Slider(minimum=0, maximum=24, step=0.1, label="Light Exposure (hours per day)", value=8)
92
+
93
+ with gr.Column():
94
+ gr.Markdown("### Soil and Chemical Analysis")
95
+ soil_ph = gr.Slider(minimum=0, maximum=14, step=0.1, label="Soil pH", value=6.5)
96
+ soil_moisture = gr.Slider(minimum=0, maximum=100, step=0.1, label="Soil Moisture (%)", value=50)
97
+ soil_nitrogen = gr.Number(label="Soil Nitrogen (mg/kg)", value=100)
98
+ soil_phosphorus = gr.Number(label="Soil Phosphorus (mg/kg)", value=50)
99
+ soil_potassium = gr.Number(label="Soil Potassium (mg/kg)", value=200)
100
+ soil_organic_carbon = gr.Number(label="Soil Organic Carbon (%)", value=2.5)
101
+
102
+ with gr.Column():
103
+ gr.Markdown("### Heavy Metals, Toxins, and Pesticides")
104
+ heavy_metal_pb = gr.Number(label="Heavy Metal Pb (ppm)", value=0.1)
105
+ heavy_metal_as = gr.Number(label="Heavy Metal As (ppm)", value=0.05)
106
+ heavy_metal_hg = gr.Number(label="Heavy Metal Hg (ppm)", value=0.01)
107
+ heavy_metal_cd = gr.Number(label="Heavy Metal Cd (ppm)", value=0.01)
108
+ aflatoxin_total = gr.Number(label="Aflatoxin Total (ppb)", value=0.2)
109
+ pesticide_residue_total = gr.Number(label="Pesticide Residue Total (ppm)", value=0.03)
110
+
111
+ with gr.Row():
112
+ with gr.Column():
113
+ gr.Markdown("### Physical and Biological Traits")
114
+ moisture_content = gr.Slider(minimum=0, maximum=100, step=0.1, label="Moisture Content (%)", value=8)
115
+ essential_oil = gr.Slider(minimum=0, maximum=100, step=0.1, label="Essential Oil (%)", value=2)
116
+ chlorophyll_index = gr.Number(label="Chlorophyll Index", value=0.7)
117
+ leaf_spots_count = gr.Number(label="Leaf Spots Count", value=5)
118
+ discoloration_index = gr.Slider(minimum=0, maximum=100, step=0.1, label="Discoloration Index (%)", value=15)
119
+
120
+ with gr.Column():
121
+ gr.Markdown("### Microbial and Authenticity Checks")
122
+ total_bacterial_count = gr.Number(label="Total Bacterial Count (CFU/g)", value=500)
123
+ total_fungal_count = gr.Number(label="Total Fungal Count (CFU/g)", value=100)
124
+ e_coli_present = gr.Radio(choices=["Yes", "No"], label="E. coli Present", value="No")
125
+ salmonella_present = gr.Radio(choices=["Yes", "No"], label="Salmonella Present", value="No")
126
+ dna_marker_authenticity = gr.Radio(choices=["Yes", "No"], label="DNA Marker Authenticity", value="Yes")
127
+
128
+ submit_btn = gr.Button("Assess Quality", variant="primary")
129
+ output_text = gr.Text(label="Assessment Result")
130
+
131
+ submit_btn.click(
132
+ fn=predict_quality,
133
+ inputs=[
134
+ herb_name,
135
+ temperature,
136
+ humidity,
137
+ storage_time,
138
+ light_exposure,
139
+ soil_ph,
140
+ soil_moisture,
141
+ soil_nitrogen,
142
+ soil_phosphorus,
143
+ soil_potassium,
144
+ soil_organic_carbon,
145
+ heavy_metal_pb,
146
+ heavy_metal_as,
147
+ heavy_metal_hg,
148
+ heavy_metal_cd,
149
+ aflatoxin_total,
150
+ pesticide_residue_total,
151
+ moisture_content,
152
+ essential_oil,
153
+ chlorophyll_index,
154
+ leaf_spots_count,
155
+ discoloration_index,
156
+ total_bacterial_count,
157
+ total_fungal_count,
158
+ e_coli_present,
159
+ salmonella_present,
160
+ dna_marker_authenticity
161
+ ],
162
+ outputs=output_text
163
+ )
164
+
165
+ app.launch()