File size: 18,494 Bytes
85e0d2b
16f89d8
 
 
 
85e0d2b
 
863b63a
 
 
 
 
85e0d2b
863b63a
c90de95
86bb0f2
863b63a
 
 
 
 
 
85e0d2b
 
 
 
 
 
 
 
 
 
 
 
 
86bb0f2
 
 
91504b2
387a013
 
863b63a
 
 
 
 
 
86bb0f2
 
 
 
387a013
57936c6
86bb0f2
 
 
 
 
c90de95
85e0d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863b63a
 
16f89d8
85e0d2b
 
 
 
 
 
16f89d8
85e0d2b
863b63a
 
85e0d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
863b63a
86bb0f2
85e0d2b
 
 
 
 
863b63a
 
85e0d2b
 
 
 
 
 
863b63a
 
85e0d2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
863b63a
 
 
 
 
 
 
 
 
 
16f89d8
 
863b63a
 
 
 
 
 
16f89d8
 
863b63a
 
16f89d8
863b63a
 
16f89d8
863b63a
 
85e0d2b
86bb0f2
863b63a
85e0d2b
 
86bb0f2
85e0d2b
863b63a
 
86bb0f2
 
 
 
 
 
 
 
 
 
 
16f89d8
863b63a
85e0d2b
863b63a
85e0d2b
863b63a
16f89d8
 
863b63a
16f89d8
85e0d2b
 
 
86bb0f2
85e0d2b
16f89d8
405ab58
16f89d8
85e0d2b
863b63a
85e0d2b
 
 
 
 
 
 
 
 
 
 
 
863b63a
 
16f89d8
863b63a
 
85e0d2b
 
863b63a
 
 
85e0d2b
 
 
 
 
863b63a
 
 
85e0d2b
405ab58
 
863b63a
16f89d8
 
 
 
86bb0f2
85e0d2b
86bb0f2
 
16f89d8
 
863b63a
 
85e0d2b
 
a3b17d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
"""Avatar Backend - Coqui XTTS v2 with RHUBARB LIP SYNC (Production Quality)"""
import os
import uuid
import time
import wave
import subprocess
import json as json_lib
from fastapi import FastAPI, Form, WebSocket
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse
from pydub import AudioSegment
from typing import List, Optional
from dotenv import load_dotenv
import torch
from TTS.api import TTS

load_dotenv()

OUT_DIR = "/tmp/avatar_static"
os.makedirs(OUT_DIR, exist_ok=True)

# Check if Rhubarb is available
RHUBARB_AVAILABLE = False
RHUBARB_PATH = "rhubarb"  # Change this if Rhubarb is in a specific location

try:
    result = subprocess.run([RHUBARB_PATH, "--version"], capture_output=True, timeout=2)
    if result.returncode == 0:
        RHUBARB_AVAILABLE = True
        print(f"[TTS] ✅ Rhubarb Lip Sync found: {result.stdout.decode().strip()}")
except:
    print("[TTS] ⚠️ Rhubarb not found - using enhanced fallback")
    print("[TTS] 💡 Install from: https://github.com/DanielSWolf/rhubarb-lip-sync/releases")

# XTTS v2 Standard Speakers
VOICE_MAP = {
    "female": "Ana Florence",
    "male": "Damien Black"
}

app = FastAPI()
app.add_middleware(CORSMiddleware, allow_origins=["*"], allow_methods=["*"], allow_headers=["*"])
app.mount("/static", StaticFiles(directory=OUT_DIR), name="static")

active_connections: List[WebSocket] = []

# Initialize Coqui XTTS v2
print("[TTS] 🚀 Initializing Coqui XTTS v2...")
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[TTS] 🖥️ Device: {device}")

try:
    tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
    print("[TTS] ✅ XTTS v2 model loaded and ready")
except Exception as e:
    print(f"[TTS] ❌ FATAL: Could not load XTTS model: {e}")
    tts = None


# ============ RHUBARB LIP SYNC INTEGRATION ============

def rhubarb_to_arkit(mouth_shape: str) -> dict:
    """

    Convert Rhubarb mouth shapes (A-H, X) to ARKit blend shapes

    

    Rhubarb documentation: https://github.com/DanielSWolf/rhubarb-lip-sync

    Based on Preston Blair's mouth shapes for animation

    """
    mappings = {
        'X': {},  # Silence - mouth closed
        'A': {  # Closed mouth (m, b, p)
            "mouthPucker": 0.4,
            "mouthPressLeft": 0.2,
            "mouthPressRight": 0.2
        },
        'B': {  # Slightly open (k, s, t, d, n)
            "jawOpen": 0.3,
            "mouthSmile": 0.2
        },
        'C': {  # Open (e as in bed, ae as in cat)
            "jawOpen": 0.6,
            "mouthSmile": 0.3
        },
        'D': {  # Wide (aa as in father)
            "jawOpen": 0.8,
            "mouthShrugLower": 0.2
        },
        'E': {  # Slight rounded (eh as in meh, uh)
            "jawOpen": 0.4,
            "mouthFunnel": 0.3
        },
        'F': {  # Puckered (oo as in boot, w)
            "mouthPucker": 0.7,
            "mouthFunnel": 0.5,
            "jawOpen": 0.2
        },
        'G': {  # Teeth visible (f, v)
            "mouthPressLeft": 0.6,
            "mouthPressRight": 0.6,
            "mouthRollUpper": 0.4,
            "jawOpen": 0.2
        },
        'H': {  # Very wide (ee as in see)
            "mouthSmile": 0.7,
            "jawOpen": 0.4
        }
    }
    
    return mappings.get(mouth_shape, {})


def generate_visemes_rhubarb(audio_path: str, text: str = None) -> Optional[List[dict]]:
    """

    Generate visemes using Rhubarb Lip Sync (PROFESSIONAL QUALITY)

    

    Returns:

        List of viseme keyframes with precise timing, or None if failed

    """
    if not RHUBARB_AVAILABLE:
        return None
    
    try:
        # Build Rhubarb command
        cmd = [RHUBARB_PATH, "-f", "json", audio_path]
        
        # Optional: provide dialog text for better recognition
        dialog_input = None
        if text:
            # Create temporary dialog file
            dialog_path = audio_path.replace('.wav', '.txt').replace('.mp3', '.txt')
            with open(dialog_path, 'w', encoding='utf-8') as f:
                f.write(text)
            cmd.extend(["--dialogFile", dialog_path])
        
        print(f"[Rhubarb] 🎬 Analyzing audio: {os.path.basename(audio_path)}")
        start = time.time()
        
        # Run Rhubarb
        result = subprocess.run(
            cmd,
            capture_output=True,
            timeout=30,
            text=True
        )
        
        if result.returncode != 0:
            print(f"[Rhubarb] ❌ Failed: {result.stderr}")
            return None
        
        # Parse Rhubarb JSON output
        rhubarb_data = json_lib.loads(result.stdout)
        
        # Convert to our viseme format
        visemes = []
        for cue in rhubarb_data.get("mouthCues", []):
            start_time = cue["start"]
            mouth_shape = cue["value"]
            
            blend = rhubarb_to_arkit(mouth_shape)
            visemes.append({"t": round(start_time, 3), "blend": blend})
        
        elapsed = time.time() - start
        print(f"[Rhubarb] ✅ Generated {len(visemes)} visemes in {elapsed:.2f}s")
        
        # Clean up temp file
        if text and os.path.exists(dialog_path):
            os.remove(dialog_path)
        
        return visemes
        
    except subprocess.TimeoutExpired:
        print("[Rhubarb] ⚠️ Timeout")
        return None
    except Exception as e:
        print(f"[Rhubarb] ⚠️ Error: {e}")
        return None


# ============ ENHANCED FALLBACK VISEME GENERATION ============

def detect_phonemes(word: str, language: str) -> list:
    """Detect phonemes in a word with language-specific rules"""
    word = word.lower()
    phonemes = []
    i = 0
    
    # Language-specific digraphs/trigraphs
    if language == "nl":
        special = {
            'sch': 'sch', 'ch': 'ch', 'ng': 'ng', 'nk': 'nk',
            'ij': 'ij', 'ei': 'ei', 'ui': 'ui', 'eu': 'eu',
            'ou': 'ou', 'au': 'au', 'aa': 'aa', 'ee': 'ee',
            'oo': 'oo', 'uu': 'uu'
        }
    else:  # English
        special = {
            'th': 'th', 'sh': 'sh', 'ch': 'ch', 'ph': 'ph',
            'wh': 'wh', 'ng': 'ng', 'oo': 'oo', 'ee': 'ee',
            'ea': 'ea', 'ou': 'ou', 'ow': 'ow', 'ai': 'ai',
            'ay': 'ay'
        }
    
    while i < len(word):
        matched = False
        # Check 3-char, then 2-char patterns
        for length in [3, 2]:
            if i + length <= len(word):
                substr = word[i:i+length]
                if substr in special:
                    phonemes.append(special[substr])
                    i += length
                    matched = True
                    break
        
        if not matched:
            phonemes.append(word[i])
            i += 1
    
    return phonemes


def phoneme_to_blend(phoneme: str) -> dict:
    """

    COMPREHENSIVE phoneme to ARKit blend shape mapping

    Supports English and Dutch phonemes

    """
    # === VOWELS ===
    # Open vowels
    if phoneme in ['a', 'aa', 'ah', 'ä']:
        return {"jawOpen": 0.7, "mouthShrugLower": 0.2}
    
    # Mid-front vowels
    elif phoneme in ['e', 'ee', 'ea', 'é', 'è']:
        return {"mouthSmile": 0.5, "jawOpen": 0.35}
    
    # High-front vowels
    elif phoneme in ['i', 'ij', 'ei', 'ie', 'ií', 'y']:
        return {"mouthSmile": 0.7, "jawOpen": 0.25}
    
    # Back rounded vowels
    elif phoneme in ['o', 'oo', 'ó', 'ö']:
        return {"mouthFunnel": 0.65, "jawOpen": 0.45}
    
    # High-back vowels
    elif phoneme in ['u', 'uu', 'ú', 'ü']:
        return {"mouthPucker": 0.7, "jawOpen": 0.2}
    
    # Dutch diphthongs
    elif phoneme in ['ui']:
        return {"mouthPucker": 0.6, "mouthFunnel": 0.4, "jawOpen": 0.3}
    elif phoneme in ['eu']:
        return {"mouthPucker": 0.5, "mouthSmile": 0.2, "jawOpen": 0.3}
    elif phoneme in ['ou', 'au']:
        return {"mouthFunnel": 0.5, "jawOpen": 0.5}
    
    # English diphthongs
    elif phoneme in ['ai', 'ay', 'ow']:
        return {"jawOpen": 0.5, "mouthSmile": 0.3}
    
    # === CONSONANTS ===
    # Bilabials (lips together)
    elif phoneme in ['m', 'p', 'b']:
        return {
            "mouthPucker": 0.5,
            "mouthPressLeft": 0.4,
            "mouthPressRight": 0.4,
            "jawOpen": 0.0
        }
    
    # Labiodentals (teeth on lip)
    elif phoneme in ['f', 'v']:
        return {
            "mouthPressLeft": 0.7,
            "mouthPressRight": 0.7,
            "mouthRollUpper": 0.4,
            "jawOpen": 0.15
        }
    
    # Dentals (tongue between teeth)
    elif phoneme in ['th']:
        return {
            "mouthRollLower": 0.5,
            "jawOpen": 0.25
        }
    
    # Approximants
    elif phoneme in ['w']:
        return {
            "mouthPucker": 0.7,
            "mouthFunnel": 0.4,
            "jawOpen": 0.25
        }
    elif phoneme in ['r']:
        return {
            "mouthSmile": 0.2,
            "jawOpen": 0.35,
            "mouthShrugUpper": 0.2
        }
    elif phoneme in ['l']:
        return {
            "jawOpen": 0.35,
            "mouthSmile": 0.25
        }
    
    # Postalveolar fricatives
    elif phoneme in ['sh', 'ch', 'sch']:
        return {
            "mouthPucker": 0.5,
            "mouthFunnel": 0.4,
            "jawOpen": 0.3
        }
    
    # Alveolar
    elif phoneme in ['s', 'z', 't', 'd', 'n']:
        return {
            "mouthSmile": 0.35,
            "jawOpen": 0.25
        }
    
    # Velars
    elif phoneme in ['k', 'g', 'ng', 'nk', 'x']:  # x for Dutch 'g'
        return {
            "jawOpen": 0.45,
            "mouthShrugLower": 0.2
        }
    
    # Palatal
    elif phoneme in ['j', 'y']:
        return {
            "mouthSmile": 0.5,
            "jawOpen": 0.3
        }
    
    # Default - slight mouth movement
    return {"jawOpen": 0.25}


def generate_visemes_enhanced(text: str, duration: float, language: str = "en") -> List[dict]:
    """

    ENHANCED fallback viseme generation with proper phoneme analysis

    Used when Rhubarb is not available

    """
    visemes = []
    words = text.split()
    if not words:
        return [{"t": 0.0, "blend": {}}]
    
    # Add silence at start
    visemes.append({"t": 0.0, "blend": {}})
    
    # Calculate timing
    time_per_word = duration / len(words)
    current_time = 0.05  # Small offset
    
    for word in words:
        word_lower = word.lower().strip('.,!?;:')
        
        # Detect phonemes with language rules
        phonemes = detect_phonemes(word_lower, language)
        
        if not phonemes:
            continue
        
        # Time for each phoneme
        phoneme_duration = time_per_word / len(phonemes)
        
        for i, phoneme in enumerate(phonemes):
            phoneme_start = current_time + (i * phoneme_duration)
            blend = phoneme_to_blend(phoneme)
            
            if blend:
                visemes.append({
                    "t": round(phoneme_start, 3),
                    "blend": blend
                })
        
        current_time += time_per_word
    
    # Add closing silence
    visemes.append({"t": round(duration - 0.05, 3), "blend": {}})
    
    # Ensure sorted by time
    visemes.sort(key=lambda v: v["t"])
    
    return visemes


def generate_visemes_smart(audio_path: str, text: str, duration: float, language: str) -> List[dict]:
    """

    SMART viseme generation - tries Rhubarb first, falls back to enhanced

    """
    # Try Rhubarb first (professional quality)
    if RHUBARB_AVAILABLE:
        visemes = generate_visemes_rhubarb(audio_path, text)
        if visemes and len(visemes) > 0:
            return visemes
        else:
            print("[Visemes] ⚠️ Rhubarb failed, using enhanced fallback")
    
    # Fallback to enhanced phoneme-based generation
    return generate_visemes_enhanced(text, duration, language)


def generate_visemes_rhubarb(audio_path: str, text: str = None) -> Optional[List[dict]]:
    """

    Generate visemes using Rhubarb Lip Sync analyzer

    

    Rhubarb analyzes the ACTUAL audio waveform and phonemes,

    not just text characters. Much more accurate!

    """
    try:
        # Create dialog file for better recognition
        dialog_path = None
        if text:
            dialog_path = audio_path.replace('.wav', '.txt').replace('.mp3', '.txt')
            with open(dialog_path, 'w', encoding='utf-8') as f:
                f.write(text)
        
        # Build command
        cmd = [RHUBARB_PATH, "-f", "json", audio_path]
        if dialog_path:
            cmd.extend(["--dialogFile", dialog_path])
        
        # Run Rhubarb
        result = subprocess.run(
            cmd,
            capture_output=True,
            timeout=30,
            text=True
        )
        
        # Clean up dialog file
        if dialog_path and os.path.exists(dialog_path):
            os.remove(dialog_path)
        
        if result.returncode != 0:
            print(f"[Rhubarb] ❌ Error: {result.stderr}")
            return None
        
        # Parse JSON output
        rhubarb_data = json_lib.loads(result.stdout)
        
        # Convert to ARKit visemes
        visemes = []
        for cue in rhubarb_data.get("mouthCues", []):
            start_time = cue["start"]
            mouth_shape = cue["value"]
            
            blend = rhubarb_to_arkit(mouth_shape)
            visemes.append({"t": round(start_time, 3), "blend": blend})
        
        return visemes
        
    except subprocess.TimeoutExpired:
        print("[Rhubarb] ⚠️ Timeout")
        return None
    except Exception as e:
        print(f"[Rhubarb] ⚠️ Error: {e}")
        return None


@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await websocket.accept()
    active_connections.append(websocket)
    try:
        while True:
            await websocket.receive_text()
    except:
        pass
    finally:
        if websocket in active_connections:
            active_connections.remove(websocket)

async def broadcast_to_avatars(data: dict):
    for connection in active_connections[:]:
        try:
            await connection.send_json(data)
        except:
            if connection in active_connections:
                active_connections.remove(connection)

@app.post("/speak")
async def speak(text: str = Form(...), voice: str = Form("female"), language: str = Form("en")):
    t_start = time.time()
    uid = uuid.uuid4().hex[:8]
    wav_path = os.path.join(OUT_DIR, f"{uid}.wav")
    mp3_path = os.path.join(OUT_DIR, f"{uid}.mp3")
    
    speaker_name = VOICE_MAP.get(voice, voice)
    
    print(f"\n{'='*60}")
    print(f"[Backend] TTS Generation")
    print(f"[Backend] Text: '{text[:60]}{'...' if len(text) > 60 else ''}'")
    print(f"[Backend] Lang: {language} | Speaker: {speaker_name}")
    print(f"[Backend] Lip Sync: {'Rhubarb' if RHUBARB_AVAILABLE else 'Enhanced Fallback'}")
    
    try:
        if tts is None:
            raise Exception("TTS Model not initialized")

        # Generate Audio
        tts.tts_to_file(
            text=text,
            file_path=wav_path,
            speaker=speaker_name,
            language=language,
            split_sentences=True
        )
        
        t2 = time.time()
        print(f"[Backend] ✅ Audio generated in {t2-t_start:.2f}s")
        
        # Convert to MP3 and get duration
        try:
            audio = AudioSegment.from_wav(wav_path)
            audio.export(mp3_path, format="mp3", bitrate="128k")
            duration_sec = len(audio) / 1000.0
            audio_file = mp3_path
            
            # Keep WAV for Rhubarb analysis
            wav_for_analysis = wav_path
        except Exception as e:
            print(f"[Backend] ⚠️ MP3 conversion failed: {e}")
            with wave.open(wav_path, 'rb') as wf:
                duration_sec = wf.getnframes() / float(wf.getframerate())
            audio_file = wav_path
            wav_for_analysis = wav_path
        
        t3 = time.time()
        print(f"[Backend] ✅ Audio ready ({duration_sec:.2f}s duration)")
        
        # Generate visemes with smart method selection
        visemes = generate_visemes_smart(wav_for_analysis, text, duration_sec, language)
        
        t4 = time.time()
        print(f"[Backend] ✅ Visemes generated in {t4-t3:.2f}s ({len(visemes)} keyframes)")
        
        # Clean up WAV if we converted to MP3
        if audio_file == mp3_path and os.path.exists(wav_path):
            os.remove(wav_path)
        
        response_data = {
            "audio_url": f"/static/{os.path.basename(audio_file)}",
            "visemes": visemes,
            "duration": duration_sec,
            "text": text,
            "method": "rhubarb" if RHUBARB_AVAILABLE else "enhanced_fallback"
        }
        
        await broadcast_to_avatars(response_data)
        
        total_time = time.time() - t_start
        print(f"[Backend] ✅ Total time: {total_time:.2f}s")
        print(f"{'='*60}\n")
        
        return response_data
        
    except Exception as e:
        error_msg = f"TTS failed: {str(e)}"
        print(f"[Backend] ❌ {error_msg}")
        return JSONResponse(status_code=500, content={"error": error_msg})

@app.get("/")
async def root():
    return {
        "status": "running",
        "tts_engine": "coqui-xtts-v2",
        "lip_sync": "rhubarb" if RHUBARB_AVAILABLE else "enhanced_fallback",
        "languages": ["en", "nl", "fr", "de", "it", "es", "ja", "zh", "pt", "pl", "tr", "ru", "cs", "ar", "hu", "ko"],
        "voices": VOICE_MAP
    }

if __name__ == "__main__":
    import uvicorn
    print("🚀 Avatar Server (XTTS v2 + RHUBARB)")
    print(f"🎬 Lip Sync: {'Rhubarb (Professional)' if RHUBARB_AVAILABLE else 'Enhanced Fallback'}")
    uvicorn.run(app, host="0.0.0.0", port=8765)