Spaces:
Runtime error
Runtime error
| import spaces | |
| import gradio as gr | |
| import torch | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from PIL import Image | |
| import cv2 | |
| import os | |
| from diffusers.utils import load_image, check_min_version | |
| from controlnet_flux import FluxControlNetModel | |
| from pipeline_flux_controlnet_inpaint import FluxControlNetInpaintingPipeline | |
| from diffusers.models.attention_processor import Attention | |
| from transformers import AutoProcessor, AutoModelForMaskGeneration, pipeline | |
| from dataclasses import dataclass | |
| from typing import Any, List, Dict, Optional, Union, Tuple | |
| from huggingface_hub import hf_hub_download | |
| import random | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| # --- Helper Dataclasses (Identical to previous version) --- | |
| class BoundingBox: | |
| xmin: int | |
| ymin: int | |
| xmax: int | |
| ymax: int | |
| def xyxy(self) -> List[float]: | |
| return [self.xmin, self.ymin, self.xmax, self.ymax] | |
| class DetectionResult: | |
| score: float | |
| label: str | |
| box: BoundingBox | |
| mask: Optional[np.array] = None | |
| def from_dict(cls, detection_dict: Dict) -> 'DetectionResult': | |
| return cls(score=detection_dict['score'], | |
| label=detection_dict['label'], | |
| box=BoundingBox(xmin=detection_dict['box']['xmin'], | |
| ymin=detection_dict['box']['ymin'], | |
| xmax=detection_dict['box']['xmax'], | |
| ymax=detection_dict['box']['ymax'])) | |
| # --- Helper Functions (Identical to previous version) --- | |
| def mask_to_polygon(mask: np.ndarray) -> List[List[int]]: | |
| contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
| if not contours: | |
| return [] | |
| largest_contour = max(contours, key=cv2.contourArea) | |
| return largest_contour.reshape(-1, 2).tolist() | |
| def polygon_to_mask(polygon: List[Tuple[int, int]], image_shape: Tuple[int, int]) -> np.ndarray: | |
| mask = np.zeros(image_shape, dtype=np.uint8) | |
| if not polygon: | |
| return mask | |
| pts = np.array(polygon, dtype=np.int32) | |
| cv2.fillPoly(mask, [pts], color=(255,)) | |
| return mask | |
| def get_boxes(results: List[DetectionResult]) -> List[List[List[float]]]: | |
| boxes = [result.box.xyxy for result in results] | |
| return [boxes] | |
| def refine_masks(masks: torch.BoolTensor, polygon_refinement: bool = False) -> List[np.ndarray]: | |
| masks = masks.cpu().float().permute(0, 2, 3, 1).mean(axis=-1) | |
| masks = (masks > 0).int().numpy().astype(np.uint8) | |
| masks = list(masks) | |
| if polygon_refinement: | |
| for idx, mask in enumerate(masks): | |
| shape = mask.shape | |
| polygon = mask_to_polygon(mask) | |
| refined_mask = polygon_to_mask(polygon, shape) | |
| masks[idx] = refined_mask | |
| return masks | |
| def detect( | |
| object_detector, image: Image.Image, labels: List[str], threshold: float = 0.3, detector_id: Optional[str] = None | |
| ) -> List[DetectionResult]: | |
| labels = [label if label.endswith(".") else label + "." for label in labels] | |
| results = object_detector(image, candidate_labels=labels, threshold=threshold) | |
| return [DetectionResult.from_dict(result) for result in results] | |
| def segment( | |
| segmentator, processor, image: Image.Image, detection_results: List[DetectionResult], polygon_refinement: bool = False | |
| ) -> List[DetectionResult]: | |
| if not detection_results: | |
| return [] | |
| boxes = get_boxes(detection_results) | |
| inputs = processor(images=image, input_boxes=boxes, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| outputs = segmentator(**inputs) | |
| masks = processor.post_process_masks( | |
| masks=outputs.pred_masks, original_sizes=inputs.original_sizes, reshaped_input_sizes=inputs.reshaped_input_sizes | |
| )[0] | |
| masks = refine_masks(masks, polygon_refinement) | |
| for detection_result, mask in zip(detection_results, masks): | |
| detection_result.mask = mask | |
| return detection_results | |
| def grounded_segmentation( | |
| detect_pipeline, segmentator, segment_processor, image: Image.Image, labels: List[str], | |
| ) -> Tuple[np.ndarray, List[DetectionResult]]: | |
| detections = detect(detect_pipeline, image, labels, threshold=0.3) | |
| detections = segment(segmentator, segment_processor, image, detections, polygon_refinement=True) | |
| return np.array(image), detections | |
| def segment_image(image, object_name, detector, segmentator, seg_processor): | |
| """ | |
| Segments a specific object from an image and returns the segmented object on a white background. | |
| Args: | |
| image (PIL.Image.Image): The input image. | |
| object_name (str): The name of the object to segment. | |
| detector: The object detection pipeline. | |
| segmentator: The mask generation model. | |
| seg_processor: The processor for the mask generation model. | |
| Returns: | |
| PIL.Image.Image: The image with the segmented object on a white background. | |
| Raises: | |
| gr.Error: If the object cannot be segmented. | |
| """ | |
| image_array, detections = grounded_segmentation(detector, segmentator, seg_processor, image, [object_name]) | |
| if not detections or detections[0].mask is None: | |
| raise gr.Error(f"Could not segment the subject '{object_name}' in the image. Please try a clearer image or a more specific subject name.") | |
| mask_expanded = np.expand_dims(detections[0].mask / 255, axis=-1) | |
| segment_result = image_array * mask_expanded + np.ones_like(image_array) * (1 - mask_expanded) * 255 | |
| return Image.fromarray(segment_result.astype(np.uint8)) | |
| def make_diptych(image): | |
| """ | |
| Creates a diptych image by concatenating the input image with a black image of the same size. | |
| Args: | |
| image (PIL.Image.Image): The input image. | |
| Returns: | |
| PIL.Image.Image: The diptych image. | |
| """ | |
| ref_image_np = np.array(image) | |
| diptych_np = np.concatenate([ref_image_np, np.zeros_like(ref_image_np)], axis=1) | |
| return Image.fromarray(diptych_np) | |
| # --- Custom Attention Processor (Identical to previous version) --- | |
| class CustomFluxAttnProcessor2_0: | |
| def __init__(self, height=44, width=88, attn_enforce=1.0): | |
| if not hasattr(F, "scaled_dot_product_attention"): | |
| raise ImportError("FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") | |
| self.height = height | |
| self.width = width | |
| self.num_pixels = height * width | |
| self.step = 0 | |
| self.attn_enforce = attn_enforce | |
| def __call__( | |
| self, | |
| attn: Attention, | |
| hidden_states: torch.FloatTensor, | |
| encoder_hidden_states: torch.FloatTensor = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| image_rotary_emb: Optional[torch.Tensor] = None, | |
| ) -> torch.FloatTensor: | |
| self.step += 1 | |
| batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| inner_dim, head_dim = key.shape[-1], key.shape[-1] // attn.heads | |
| query, key, value = [x.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) for x in [query, key, value]] | |
| if attn.norm_q is not None: query = attn.norm_q(query) | |
| if attn.norm_k is not None: key = attn.norm_k(key) | |
| if encoder_hidden_states is not None: | |
| encoder_q = attn.add_q_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| encoder_k = attn.add_k_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| encoder_v = attn.add_v_proj(encoder_hidden_states).view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| if attn.norm_added_q is not None: encoder_q = attn.norm_added_q(encoder_q) | |
| if attn.norm_added_k is not None: encoder_k = attn.norm_added_k(encoder_k) | |
| query, key, value = [torch.cat([e, x], dim=2) for e, x in zip([encoder_q, encoder_k, encoder_v], [query, key, value])] | |
| if image_rotary_emb is not None: | |
| from diffusers.models.embeddings import apply_rotary_emb | |
| query = apply_rotary_emb(query, image_rotary_emb) | |
| key = apply_rotary_emb(key, image_rotary_emb) | |
| if self.attn_enforce != 1.0: | |
| attn_probs = (torch.einsum('bhqd,bhkd->bhqk', query, key) * attn.scale).softmax(dim=-1) | |
| img_attn_probs = attn_probs[:, :, -self.num_pixels:, -self.num_pixels:].reshape((batch_size, attn.heads, self.height, self.width, self.height, self.width)) | |
| img_attn_probs[:, :, :, self.width//2:, :, :self.width//2] *= self.attn_enforce | |
| img_attn_probs = img_attn_probs.reshape((batch_size, attn.heads, self.num_pixels, self.num_pixels)) | |
| attn_probs[:, :, -self.num_pixels:, -self.num_pixels:] = img_attn_probs | |
| hidden_states = torch.einsum('bhqk,bhkd->bhqd', attn_probs, value) | |
| else: | |
| hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim).to(query.dtype) | |
| if encoder_hidden_states is not None: | |
| encoder_hs, hs = hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :] | |
| hs = attn.to_out[0](hs) | |
| hs = attn.to_out[1](hs) | |
| encoder_hs = attn.to_add_out(encoder_hs) | |
| return hs, encoder_hs | |
| else: | |
| return hidden_states | |
| # --- Model Loading (executed once at startup) --- | |
| print("--- Loading Models: This may take a few minutes and requires >40GB VRAM ---") | |
| controlnet = FluxControlNetModel.from_pretrained("alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta", torch_dtype=torch.bfloat16) | |
| pipe = FluxControlNetInpaintingPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", controlnet=controlnet, torch_dtype=torch.bfloat16).to(device) | |
| pipe.transformer.to(torch.bfloat16) | |
| pipe.controlnet.to(torch.bfloat16) | |
| base_attn_procs = pipe.transformer.attn_processors.copy() | |
| print("Loading segmentation models...") | |
| detector_id, segmenter_id = "IDEA-Research/grounding-dino-tiny", "facebook/sam-vit-base" | |
| segmentator = AutoModelForMaskGeneration.from_pretrained(segmenter_id).to(device) | |
| segment_processor = AutoProcessor.from_pretrained(segmenter_id) | |
| object_detector = pipeline(model=detector_id, task="zero-shot-object-detection", device=device) | |
| print("--- All models loaded successfully! ---") | |
| def get_duration( | |
| input_image: Image.Image, | |
| subject_name: str, | |
| do_segmentation: bool, | |
| full_prompt: str, | |
| attn_enforce: float, | |
| ctrl_scale: float, | |
| width: int, | |
| height: int, | |
| pixel_offset: int, | |
| num_steps: int, | |
| guidance: float, | |
| real_guidance: float, | |
| seed: int, | |
| randomize_seed: bool, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| """ | |
| Calculates the estimated duration for the Spaces GPU based on image dimensions. | |
| Args: | |
| input_image (PIL.Image.Image): The input reference image. | |
| subject_name (str): Name of the subject for segmentation. | |
| do_segmentation (bool): Whether to perform segmentation. | |
| full_prompt (str): The full text prompt. | |
| attn_enforce (float): Attention enforcement value. | |
| ctrl_scale (float): ControlNet conditioning scale. | |
| width (int): Target width of the generated image. | |
| height (int): Target height of the generated image. | |
| pixel_offset (int): Padding offset in pixels. | |
| num_steps (int): Number of inference steps. | |
| guidance (float): Distilled guidance scale. | |
| real_guidance (float): Real guidance scale. | |
| seed (int): Random seed. | |
| randomize_seed (bool): Whether to randomize the seed. | |
| progress (gr.Progress): Gradio progress tracker. | |
| Returns: | |
| int: Estimated duration in seconds. | |
| """ | |
| if width > 768 or height > 768: | |
| return 210 | |
| else: | |
| return 120 | |
| def run_diptych_prompting( | |
| input_image: Image.Image, | |
| subject_name: str, | |
| do_segmentation: bool, | |
| full_prompt: str, | |
| attn_enforce: float, | |
| ctrl_scale: float, | |
| width: int, | |
| height: int, | |
| pixel_offset: int, | |
| num_steps: int, | |
| guidance: float, | |
| real_guidance: float, | |
| seed: int, | |
| randomize_seed: bool, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| """ | |
| Runs the diptych prompting image generation process. | |
| Args: | |
| input_image (PIL.Image.Image): The input reference image. | |
| subject_name (str): The name of the subject for segmentation (if `do_segmentation` is True). | |
| do_segmentation (bool): If True, the subject will be segmented from the reference image. | |
| full_prompt (str): The complete text prompt used for image generation. | |
| attn_enforce (float): Controls the attention enforcement in the custom attention processor. | |
| ctrl_scale (float): The conditioning scale for ControlNet. | |
| width (int): The desired width of the final generated image. | |
| height (int): The desired height of the final generated image. | |
| pixel_offset (int): Padding added around the image during diptych creation. | |
| num_steps (int): The number of inference steps for the diffusion process. | |
| guidance (float): The distilled guidance scale for the diffusion process. | |
| real_guidance (float): The real guidance scale for the diffusion process. | |
| seed (int): The random seed for reproducibility. | |
| randomize_seed (bool): If True, a random seed will be used instead of the provided `seed`. | |
| progress (gr.Progress): Gradio progress tracker to update UI during execution. | |
| Returns: | |
| tuple: A tuple containing: | |
| - PIL.Image.Image: The final generated image. | |
| - PIL.Image.Image: The processed reference image (left panel of the diptych). | |
| - PIL.Image.Image: The full diptych image generated by the pipeline. | |
| - str: The final prompt used. | |
| - int: The actual seed used for generation. | |
| Raises: | |
| gr.Error: If a reference image is not uploaded, prompts are empty, or segmentation fails. | |
| """ | |
| if randomize_seed: | |
| actual_seed = random.randint(0, 9223372036854775807) | |
| else: | |
| actual_seed = seed | |
| if input_image is None: raise gr.Error("Please upload a reference image.") | |
| if not full_prompt: raise gr.Error("Full Prompt is empty. Please fill out the prompt fields.") | |
| # 1. Prepare dimensions and reference image | |
| padded_width = width + pixel_offset * 2 | |
| padded_height = height + pixel_offset * 2 | |
| diptych_size = (padded_width * 2, padded_height) | |
| reference_image = input_image.resize((padded_width, padded_height)).convert("RGB") | |
| # 2. Process reference image based on segmentation flag | |
| progress(0, desc="Preparing reference image...") | |
| if do_segmentation: | |
| if not subject_name: | |
| raise gr.Error("Subject Name is required when 'Do Segmentation' is checked.") | |
| progress(0.05, desc="Segmenting reference image...") | |
| processed_image = segment_image(reference_image, subject_name, object_detector, segmentator, segment_processor) | |
| else: | |
| processed_image = reference_image | |
| # 3. Create diptych and mask | |
| progress(0.2, desc="Creating diptych and mask...") | |
| mask_image = np.concatenate([np.zeros((padded_height, padded_width, 3)), np.ones((padded_height, padded_width, 3)) * 255], axis=1) | |
| mask_image = Image.fromarray(mask_image.astype(np.uint8)) | |
| diptych_image_prompt = make_diptych(processed_image) | |
| # 4. Setup Attention Processor | |
| progress(0.3, desc="Setting up attention processors...") | |
| new_attn_procs = base_attn_procs.copy() | |
| for k in new_attn_procs: | |
| new_attn_procs[k] = CustomFluxAttnProcessor2_0(height=padded_height // 16, width=padded_width * 2 // 16, attn_enforce=attn_enforce) | |
| pipe.transformer.set_attn_processor(new_attn_procs) | |
| # 5. Run Inference | |
| progress(0.4, desc="Running diffusion process...") | |
| generator = torch.Generator(device="cuda").manual_seed(actual_seed) | |
| full_diptych_result = pipe( | |
| prompt=full_prompt, | |
| height=diptych_size[1], | |
| width=diptych_size[0], | |
| control_image=diptych_image_prompt, | |
| control_mask=mask_image, | |
| num_inference_steps=num_steps, | |
| generator=generator, | |
| controlnet_conditioning_scale=ctrl_scale, | |
| guidance_scale=guidance, | |
| negative_prompt="", | |
| true_guidance_scale=real_guidance | |
| ).images[0] | |
| # 6. Final cropping | |
| progress(0.95, desc="Finalizing image...") | |
| final_image = full_diptych_result.crop((padded_width, 0, padded_width * 2, padded_height)) | |
| final_image = final_image.crop((pixel_offset, pixel_offset, padded_width - pixel_offset, padded_height - pixel_offset)) | |
| # 7. Return all outputs | |
| return final_image, processed_image, full_diptych_result, full_prompt, actual_seed | |
| # --- Gradio UI Definition --- | |
| css = ''' | |
| .gradio-container{max-width: 960px;margin: 0 auto} | |
| ''' | |
| with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo: | |
| gr.Markdown( | |
| """ | |
| # Diptych Prompting: Zero-Shot Subject-Driven & Style-Driven Image Generation | |
| ### Demo for the paper "[Large-Scale Text-to-Image Model with Inpainting is a Zero-Shot Subject-Driven Image Generator](https://diptychprompting.github.io/)" | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_image = gr.Image(type="pil", label="Reference Image") | |
| with gr.Group() as subject_driven_group: | |
| subject_name = gr.Textbox(label="Subject Name", placeholder="e.g., a plush bear") | |
| target_prompt = gr.Textbox(label="Target Prompt", placeholder="e.g., riding a skateboard on the moon") | |
| run_button = gr.Button("Generate Image", variant="primary") | |
| with gr.Accordion("Advanced Settings", open=False): | |
| mode = gr.Radio(["Subject-Driven", "Style-Driven (unstable)"], label="Generation Mode", value="Subject-Driven") | |
| with gr.Group(visible=False) as style_driven_group: | |
| original_style_description = gr.Textbox(label="Original Image Description", placeholder="e.g., in watercolor painting style") | |
| do_segmentation = gr.Checkbox(label="Do Segmentation", value=True) | |
| attn_enforce = gr.Slider(minimum=1.0, maximum=2.0, value=1.3, step=0.05, label="Attention Enforcement") | |
| full_prompt = gr.Textbox(label="Full Prompt (Auto-generated, editable)", lines=3) | |
| ctrl_scale = gr.Slider(minimum=0.5, maximum=1.0, value=0.95, step=0.01, label="ControlNet Scale") | |
| num_steps = gr.Slider(minimum=20, maximum=50, value=28, step=1, label="Inference Steps") | |
| guidance = gr.Slider(minimum=1.0, maximum=10.0, value=3.5, step=0.1, label="Distilled Guidance Scale") | |
| real_guidance = gr.Slider(minimum=1.0, maximum=10.0, value=4.5, step=0.1, label="Real Guidance Scale") | |
| width = gr.Slider(minimum=512, maximum=1024, value=768, step=64, label="Image Width") | |
| height = gr.Slider(minimum=512, maximum=1024, value=768, step=64, label="Image Height") | |
| pixel_offset = gr.Slider(minimum=0, maximum=32, value=8, step=1, label="Padding (Pixel Offset)") | |
| seed = gr.Slider(minimum=0, maximum=9223372036854775807, value=42, step=1, label="Seed") | |
| randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
| with gr.Column(scale=1): | |
| output_image = gr.Image(type="pil", label="Generated Image") | |
| with gr.Accordion("Other Outputs", open=False) as other_outputs_accordion: | |
| processed_ref_image = gr.Image(label="Processed Reference (Left Panel)") | |
| full_diptych_image = gr.Image(label="Full Diptych Output") | |
| final_prompt_used = gr.Textbox(label="Final Prompt Used") | |
| # --- UI Event Handlers --- | |
| def toggle_mode_visibility(mode_choice): | |
| """ | |
| Hides/shows the relevant input textboxes based on the selected mode. | |
| Args: | |
| mode_choice (str): The selected generation mode ("Subject-Driven" or "Style-Driven"). | |
| Returns: | |
| tuple: Gradio update objects for `subject_driven_group` and `style_driven_group` visibility. | |
| """ | |
| if mode_choice == "Subject-Driven": | |
| return gr.update(visible=True), gr.update(visible=False) | |
| else: | |
| return gr.update(visible=False), gr.update(visible=True) | |
| def update_derived_fields(mode_choice, subject, style_desc, target): | |
| """ | |
| Updates the full prompt and segmentation checkbox based on other inputs. | |
| Args: | |
| mode_choice (str): The selected generation mode ("Subject-Driven" or "Style-Driven"). | |
| subject (str): The subject name (relevant for "Subject-Driven" mode). | |
| style_desc (str): The original style description (relevant for "Style-Driven" mode). | |
| target (str): The target prompt. | |
| Returns: | |
| tuple: Gradio update objects for `full_prompt` value and `do_segmentation` checkbox value. | |
| """ | |
| if mode_choice == "Subject-Driven": | |
| prompt = f"A diptych with two side-by-side images of same {subject}. On the left, a photo of {subject}. On the right, replicate this {subject} exactly but as {target}" | |
| return gr.update(value=prompt), gr.update(value=True) | |
| else: # Style-Driven | |
| prompt = f"A diptych with two side-by-side images of same style. On the left, {style_desc}. On the right, replicate this style exactly but as {target}" | |
| return gr.update(value=prompt), gr.update(value=False) | |
| # --- UI Connections --- | |
| # When mode changes, toggle visibility of the specific prompt fields | |
| mode.change( | |
| fn=toggle_mode_visibility, | |
| inputs=mode, | |
| outputs=[subject_driven_group, style_driven_group], | |
| queue=False | |
| ) | |
| # A list of all inputs that affect the full prompt or segmentation checkbox | |
| prompt_component_inputs = [mode, subject_name, original_style_description, target_prompt] | |
| # A list of the UI elements that are derived from the above inputs | |
| derived_outputs = [full_prompt, do_segmentation] | |
| # When any prompt component changes, update the derived fields | |
| for component in prompt_component_inputs: | |
| component.change(update_derived_fields, inputs=prompt_component_inputs, outputs=derived_outputs, queue=False, show_progress="hidden") | |
| run_button.click( | |
| fn=run_diptych_prompting, | |
| inputs=[ | |
| input_image, subject_name, do_segmentation, full_prompt, attn_enforce, | |
| ctrl_scale, width, height, pixel_offset, num_steps, guidance, | |
| real_guidance, seed, randomize_seed | |
| ], | |
| outputs=[output_image, processed_ref_image, full_diptych_image, final_prompt_used, seed] | |
| ) | |
| def run_subject_driven_example(input_image, subject_name, target_prompt): | |
| """ | |
| Helper function to run an example for the subject-driven mode. | |
| Args: | |
| input_image (PIL.Image.Image): The input reference image for the example. | |
| subject_name (str): The subject name for the example. | |
| target_prompt (str): The target prompt for the example. | |
| Returns: | |
| tuple: The outputs from `run_diptych_prompting`. | |
| """ | |
| # Construct the full prompt for subject-driven mode | |
| full_prompt = f"A diptych with two side-by-side images of same {subject_name}. On the left, a photo of {subject_name}. On the right, replicate this {subject_name} exactly but as {target_prompt}" | |
| # Call the main function with all arguments, using defaults for subject-driven mode | |
| return run_diptych_prompting( | |
| input_image=input_image, | |
| subject_name=subject_name, | |
| do_segmentation=True, | |
| full_prompt=full_prompt, | |
| attn_enforce=1.3, | |
| ctrl_scale=0.95, | |
| width=768, | |
| height=768, | |
| pixel_offset=8, | |
| num_steps=28, | |
| guidance=3.5, | |
| real_guidance=4.5, | |
| seed=42, | |
| randomize_seed=False, | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["./assets/cat_squished.png", "a cat toy", "a cat toy riding a skate"], | |
| ["./assets/hf.png", "hugging face logo", "a hugging face logo on a hat"], | |
| ["./assets/bear_plushie.jpg", "a bear plushie", "a bear plushie drinking bubble tea"] | |
| ], | |
| inputs=[input_image, subject_name, target_prompt], | |
| outputs=[output_image, processed_ref_image, full_diptych_image, final_prompt_used, seed], | |
| fn=run_subject_driven_example, | |
| cache_examples="lazy" | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(share=True, debug=True, mcp_server=True) |