Spaces:
Paused
Paused
File size: 8,366 Bytes
d87825e dae35de fd929f3 bb6501e 3661d37 bb6501e d87825e 89b44b4 eac149d 80f71ae d87825e eac149d dae35de d87825e dae35de eac149d fd929f3 eac149d 7927c3b d87825e eac149d d87825e fd929f3 789627e 7927c3b 789627e 80f71ae 7927c3b b5d09ec 80f71ae c446fbc c79fe94 789627e c446fbc 789627e c79fe94 73418cf 789627e c79fe94 73418cf c79fe94 789627e c446fbc c79fe94 789627e c446fbc 789627e c446fbc c79fe94 789627e c79fe94 789627e c446fbc c79fe94 789627e c79fe94 c1b1497 73418cf c1b1497 7927c3b c1b1497 789627e c1b1497 789627e c1b1497 789627e c1b1497 87153fd c79fe94 789627e c79fe94 dae35de 789627e dae35de 789627e dae35de 789627e c1b1497 c79fe94 c1b1497 dae35de c446fbc dae35de 89b44b4 789627e c1b1497 89b44b4 789627e dae35de e105139 dae35de 89b44b4 fd929f3 c79fe94 80f71ae 73418cf dae35de 55cdf87 80f71ae d87825e 73418cf 84f4c93 789627e 73418cf d87825e 789627e 55cdf87 789627e d87825e 789627e fd929f3 789627e fd929f3 3661d37 fd929f3 3661d37 789627e 73418cf 789627e 3661d37 789627e 3661d37 789627e 73418cf 84f4c93 73418cf fd929f3 789627e fd929f3 789627e fd929f3 789627e d87825e fd929f3 73418cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import torch
from transformers import AutoProcessor, AutoModelForImageTextToText, BitsAndBytesConfig
import datasets
from datasets import Dataset
from typing import cast
import os
import shutil
import multiprocessing as mp
from PIL import Image
def load_model(model_name, device_id=0):
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
processor = AutoProcessor.from_pretrained(model_name)
processor.tokenizer.padding_side = "left"
model = AutoModelForImageTextToText.from_pretrained(
model_name,
quantization_config=bnb_config,
dtype=torch.bfloat16,
device_map={"": device_id},
attn_implementation="flash_attention_2",
)
return processor, model
def getTemplate(processor):
msg = [
{
"role": "user",
"content": [
{"type": "image"},
{
"type": "text",
"text": "Describe the image concisely, and skip mentioning that it's illustrated or from anime.",
},
],
}
]
return processor.apply_chat_template(
msg, add_generation_prompt=True, tokenize=False
)
def preprocess_example_batch(examples, text):
processed_images = []
for image in examples["image"]:
if isinstance(image, Image.Image):
if image.mode != "RGB":
image = image.convert("RGB")
processed_images.append(image)
else:
raise ValueError("Image must be a PIL Image")
return {
"image": processed_images,
"text": [text] * len(processed_images),
}
def run_preprocessing(input_dataset, output_dir, num_proc=32, batch_size=100, start_idx=0, end_idx=None):
print("Loading dataset for preprocessing...")
ds = datasets.load_dataset(input_dataset, split="train")
if end_idx is None:
end_idx = len(ds)
print(f"Selecting range [{start_idx}:{end_idx}]...")
ds = ds.select(range(start_idx, end_idx))
print("Loading processor...")
processor = AutoProcessor.from_pretrained("datalab-to/chandra")
text = getTemplate(processor)
print("Running preprocessing...")
processed_ds = ds.map(
lambda ex: preprocess_example_batch(ex, text),
remove_columns=[col for col in ds.column_names if col not in ["image", "text"]],
num_proc=num_proc,
batched=True,
batch_size=batch_size,
)
print(f"Saving preprocessed dataset to {output_dir}...")
processed_ds.save_to_disk(output_dir)
print("Preprocessing done.")
def caption_batch(batch, processor, model):
images = batch["image"]
texts = batch["text"]
inputs = processor(text=texts, images=images, return_tensors="pt", padding=True)
inputs = {
k: v.pin_memory().to(model.device, non_blocking=True) for k, v in inputs.items()
}
with torch.no_grad(), torch.amp.autocast("cuda", dtype=torch.bfloat16):
generated = model.generate(
**inputs,
max_new_tokens=128,
do_sample=False,
)
decoded = processor.batch_decode(generated, skip_special_tokens=False)
captions = []
special_tokens = set(processor.tokenizer.all_special_tokens)
for d in decoded:
if "<|im_start|>assistant" in d:
d = d.split("<|im_start|>assistant")[-1]
for token in special_tokens:
d = d.replace(token, "")
d = d.strip()
captions.append(d)
return {
"text": captions,
}
def process_shard(
gpu_id, start, end, model_name, batch_size, input_dataset, output_file
):
try:
torch.cuda.set_device(gpu_id)
print(f"[GPU {gpu_id}] Loading model...", flush=True)
processor, model = load_model(model_name, gpu_id)
print(f"[GPU {gpu_id}] Loading data shard [{start}:{end}]...", flush=True)
loaded = datasets.load_from_disk(input_dataset).select(range(start, end))
shard = cast(Dataset, loaded)
print(f"[GPU {gpu_id}] Processing {len(shard)} examples...", flush=True)
result = shard.map(
lambda batch: caption_batch(batch, processor, model),
batched=True,
batch_size=batch_size,
remove_columns=["text"],
)
print(f"[GPU {gpu_id}] Saving results to {output_file}...", flush=True)
result.save_to_disk(output_file)
print(f"[GPU {gpu_id}] Done!", flush=True)
return output_file
except Exception as e:
print(f"[GPU {gpu_id}] Error: {e}", flush=True)
raise
def main():
mp.set_start_method("spawn", force=True)
init_stage = os.environ.get("INIT", "0")
input_dataset = "none-yet/anime-captions"
output_dataset = "nroggendorff/anime-captions"
model_name = "datalab-to/chandra"
batch_size = 20
print(f"Running stage INIT={init_stage}")
full_ds = datasets.load_dataset(input_dataset, split="train")
total_dataset_size = len(full_ds)
midpoint = total_dataset_size // 2
if init_stage == "0":
print(f"Stage 0: Processing first half [0:{midpoint}]")
preprocessed_dataset = "temp_preprocessed_0"
start_idx = 0
end_idx = midpoint
final_output = f"{output_dataset}_part0"
else:
print(f"Stage 1: Processing second half [{midpoint}:{total_dataset_size}]")
preprocessed_dataset = "temp_preprocessed_1"
start_idx = midpoint
end_idx = total_dataset_size
final_output = input_dataset
if not os.path.exists(preprocessed_dataset):
run_preprocessing(input_dataset, preprocessed_dataset, start_idx=start_idx, end_idx=end_idx)
print("Loading preprocessed dataset...")
ds = datasets.load_from_disk(preprocessed_dataset)
num_gpus = torch.cuda.device_count()
total_size = len(ds)
shard_size = total_size // num_gpus
print(f"Dataset size: {total_size}")
print(f"Using {num_gpus} GPUs")
print(f"Shard size: {shard_size}")
processes = []
temp_files = []
for i in range(num_gpus):
start = i * shard_size
end = start + shard_size if i < num_gpus - 1 else total_size
output_file = f"temp_shard_{init_stage}_{i}"
temp_files.append(output_file)
p = mp.Process(
target=process_shard,
args=(
i,
start,
end,
model_name,
batch_size,
preprocessed_dataset,
output_file,
),
)
p.start()
processes.append(p)
for p in processes:
p.join()
if p.exitcode != 0:
print(f"\nProcess failed with exit code {p.exitcode}", flush=True)
print("Terminating all processes...", flush=True)
for proc in processes:
if proc.is_alive():
proc.terminate()
for proc in processes:
proc.join()
raise RuntimeError(f"At least one process failed")
print("\nAll processes completed. Loading and concatenating results...")
shards = [cast(Dataset, datasets.load_from_disk(f)) for f in temp_files]
final_ds = datasets.concatenate_datasets(shards)
print(f"Final dataset size: {len(final_ds)}")
if init_stage == "0":
print(f"Pushing first half to {final_output}...")
final_ds.push_to_hub(final_output, create_pr=False)
else:
print("Loading first half from hub...")
first_half = datasets.load_dataset(f"{output_dataset}_part0", split="train")
print("Concatenating both halves...")
complete_ds = datasets.concatenate_datasets([first_half, final_ds])
print(f"Complete dataset size: {len(complete_ds)}")
print(f"Pushing complete dataset to {final_output} with PR...")
complete_ds.push_to_hub(final_output, create_pr=True)
print("Cleaning up temporary files...")
for f in temp_files:
if os.path.exists(f):
shutil.rmtree(f)
if os.path.exists(preprocessed_dataset):
shutil.rmtree(preprocessed_dataset)
print("Done!")
if __name__ == "__main__":
main() |