added columns, improved depth, added error flags
Browse files
app.py
CHANGED
|
@@ -15,7 +15,7 @@ import pandas as pd
|
|
| 15 |
from skimage.io import imread, imsave
|
| 16 |
# from tddfa.TDDFA import TDDFA
|
| 17 |
from tddfa.utils.depth import depth
|
| 18 |
-
from tddfa.
|
| 19 |
|
| 20 |
import torch.optim as optim
|
| 21 |
from DSDG.DUM.models.CDCNs_u import Conv2d_cd, CDCN_u
|
|
@@ -29,13 +29,15 @@ import boto3
|
|
| 29 |
import os
|
| 30 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 31 |
os.environ['OMP_NUM_THREADS'] = '4'
|
|
|
|
|
|
|
| 32 |
|
| 33 |
app_version = 'ddn1'
|
| 34 |
|
| 35 |
device = torch.device("cpu")
|
| 36 |
labels = ['Live', 'Spoof']
|
| 37 |
pix_threshhold = 0.45
|
| 38 |
-
dsdg_threshold = 0.
|
| 39 |
examples = [
|
| 40 |
['examples/1_1_21_2_33_scene_fake.jpg'],
|
| 41 |
['examples/frame150_real.jpg'],
|
|
@@ -53,9 +55,9 @@ deepix_model.load_state_dict(torch.load('./DeePixBiS/DeePixBiS.pth'))
|
|
| 53 |
deepix_model.eval()
|
| 54 |
|
| 55 |
|
| 56 |
-
depth_config_path = 'tddfa/configs/
|
| 57 |
cfg = yaml.load(open(depth_config_path), Loader=yaml.SafeLoader)
|
| 58 |
-
tddfa =
|
| 59 |
|
| 60 |
|
| 61 |
cdcn_model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
|
|
@@ -112,15 +114,18 @@ def find_largest_face(faces):
|
|
| 112 |
|
| 113 |
|
| 114 |
def inference(img):
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
faces = faceClassifier.detectMultiScale(
|
| 117 |
grey, scaleFactor=1.1, minNeighbors=4)
|
| 118 |
face = find_largest_face(faces)
|
| 119 |
|
| 120 |
if face is not None:
|
| 121 |
x, y, w, h = face
|
| 122 |
-
|
| 123 |
-
|
|
|
|
| 124 |
faceRegion = tfms(faceRegion)
|
| 125 |
faceRegion = faceRegion.unsqueeze(0)
|
| 126 |
|
|
@@ -129,21 +134,19 @@ def inference(img):
|
|
| 129 |
res_deepix = torch.mean(mask).item()
|
| 130 |
cls_deepix = 'Real' if res_deepix >= pix_threshhold else 'Spoof'
|
| 131 |
|
| 132 |
-
|
| 133 |
-
confidences_deepix = {label_deepix: res_deepix}
|
| 134 |
color_deepix = (0, 255, 0) if cls_deepix == 'Real' else (255, 0, 0)
|
| 135 |
-
img_deepix = cv.rectangle(img.copy(), (x, y), (
|
| 136 |
-
cv.putText(img_deepix,
|
| 137 |
cv.FONT_HERSHEY_COMPLEX, 1, color_deepix)
|
| 138 |
|
| 139 |
# else:
|
| 140 |
dense_flag = True
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
param_lst, roi_box_lst = tddfa(img, [boxes])
|
| 144 |
|
| 145 |
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)
|
| 146 |
-
depth_img = depth(img, ver_lst, tddfa.tri, with_bg_flag=
|
| 147 |
with torch.no_grad():
|
| 148 |
map_score_list = []
|
| 149 |
image_x, map_x = prepare_data([img], [list(face)], [depth_img])
|
|
@@ -167,13 +170,12 @@ def inference(img):
|
|
| 167 |
if res_dsdg > 10:
|
| 168 |
res_dsdg = 0.0
|
| 169 |
cls_dsdg = 'Real' if res_dsdg >= dsdg_threshold else 'Spoof'
|
| 170 |
-
res_dsdg = res_dsdg *
|
| 171 |
|
| 172 |
-
|
| 173 |
-
confidences_dsdg = {label_dsdg: res_deepix}
|
| 174 |
color_dsdg = (0, 255, 0) if cls_dsdg == 'Real' else (255, 0, 0)
|
| 175 |
-
img_dsdg = cv.rectangle(img.copy(), (x, y), (
|
| 176 |
-
cv.putText(img_dsdg,
|
| 177 |
cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
|
| 178 |
|
| 179 |
cls_deepix, cls_dsdg = [1 if cls_ == 'Real' else 0 for cls_ in [cls_deepix, cls_dsdg]]
|
|
@@ -186,6 +188,12 @@ def inference(img):
|
|
| 186 |
def upload_to_s3(image_array, app_version, *labels):
|
| 187 |
folder = 'demo'
|
| 188 |
bucket_name = 'livenessng'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
# Initialize S3 client
|
| 191 |
s3 = boto3.client('s3')
|
|
@@ -212,25 +220,27 @@ def upload_to_s3(image_array, app_version, *labels):
|
|
| 212 |
demo = gr.Blocks()
|
| 213 |
|
| 214 |
with demo:
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
btn_run.click(inference, [input_img], outputs+labels)
|
| 225 |
-
|
| 226 |
app_version_block = gr.Textbox(value=app_version, visible=False)
|
| 227 |
-
|
| 228 |
-
radio = gr.Radio(
|
| 229 |
-
["Real", "Spoof", "None"], label="True label", type='index'
|
| 230 |
-
)
|
| 231 |
-
flag = gr.Button(value="Flag")
|
| 232 |
-
status = gr.Textbox()
|
| 233 |
-
flag.click(upload_to_s3, [input_img, app_version_block, radio]+labels, [status], show_progress=True)
|
| 234 |
|
| 235 |
|
| 236 |
if __name__ == '__main__':
|
|
|
|
| 15 |
from skimage.io import imread, imsave
|
| 16 |
# from tddfa.TDDFA import TDDFA
|
| 17 |
from tddfa.utils.depth import depth
|
| 18 |
+
from tddfa.TDDFA_ONNX import TDDFA_ONNX
|
| 19 |
|
| 20 |
import torch.optim as optim
|
| 21 |
from DSDG.DUM.models.CDCNs_u import Conv2d_cd, CDCN_u
|
|
|
|
| 29 |
import os
|
| 30 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
| 31 |
os.environ['OMP_NUM_THREADS'] = '4'
|
| 32 |
+
os.environ['AWS_ACCESS_KEY_ID'] = 'AKIA3JAMX4K53MFDKMGJ'
|
| 33 |
+
os.environ['AWS_SECRET_ACCESS_KEY'] = 'lHf9xIwdgO3eXrE9a4KL+BTJ7af2cgZJYRRxw4NI'
|
| 34 |
|
| 35 |
app_version = 'ddn1'
|
| 36 |
|
| 37 |
device = torch.device("cpu")
|
| 38 |
labels = ['Live', 'Spoof']
|
| 39 |
pix_threshhold = 0.45
|
| 40 |
+
dsdg_threshold = 0.0015
|
| 41 |
examples = [
|
| 42 |
['examples/1_1_21_2_33_scene_fake.jpg'],
|
| 43 |
['examples/frame150_real.jpg'],
|
|
|
|
| 55 |
deepix_model.eval()
|
| 56 |
|
| 57 |
|
| 58 |
+
depth_config_path = 'tddfa/configs/mb1_120x120.yml' # 'tddfa/configs/mb1_120x120.yml
|
| 59 |
cfg = yaml.load(open(depth_config_path), Loader=yaml.SafeLoader)
|
| 60 |
+
tddfa = TDDFA_ONNX(gpu_mode=False, **cfg)
|
| 61 |
|
| 62 |
|
| 63 |
cdcn_model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
def inference(img):
|
| 117 |
+
if img is None:
|
| 118 |
+
return None, {}, None, None, {}, None, None
|
| 119 |
+
grey = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
|
| 120 |
faces = faceClassifier.detectMultiScale(
|
| 121 |
grey, scaleFactor=1.1, minNeighbors=4)
|
| 122 |
face = find_largest_face(faces)
|
| 123 |
|
| 124 |
if face is not None:
|
| 125 |
x, y, w, h = face
|
| 126 |
+
x2 = x + w
|
| 127 |
+
y2 = y + h
|
| 128 |
+
faceRegion = img[y:y2, x:x2]
|
| 129 |
faceRegion = tfms(faceRegion)
|
| 130 |
faceRegion = faceRegion.unsqueeze(0)
|
| 131 |
|
|
|
|
| 134 |
res_deepix = torch.mean(mask).item()
|
| 135 |
cls_deepix = 'Real' if res_deepix >= pix_threshhold else 'Spoof'
|
| 136 |
|
| 137 |
+
confidences_deepix = {'Real confidence': res_deepix}
|
|
|
|
| 138 |
color_deepix = (0, 255, 0) if cls_deepix == 'Real' else (255, 0, 0)
|
| 139 |
+
img_deepix = cv.rectangle(img.copy(), (x, y), (x2, y2), color_deepix, 2)
|
| 140 |
+
cv.putText(img_deepix, cls_deepix, (x, y2 + 30),
|
| 141 |
cv.FONT_HERSHEY_COMPLEX, 1, color_deepix)
|
| 142 |
|
| 143 |
# else:
|
| 144 |
dense_flag = True
|
| 145 |
+
box = [x, y, x2, y2, 1]
|
| 146 |
+
param_lst, roi_box_lst = tddfa(img, [box])
|
|
|
|
| 147 |
|
| 148 |
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)
|
| 149 |
+
depth_img = depth(img, ver_lst, tddfa.tri, with_bg_flag=True)
|
| 150 |
with torch.no_grad():
|
| 151 |
map_score_list = []
|
| 152 |
image_x, map_x = prepare_data([img], [list(face)], [depth_img])
|
|
|
|
| 170 |
if res_dsdg > 10:
|
| 171 |
res_dsdg = 0.0
|
| 172 |
cls_dsdg = 'Real' if res_dsdg >= dsdg_threshold else 'Spoof'
|
| 173 |
+
res_dsdg = res_dsdg * 300
|
| 174 |
|
| 175 |
+
confidences_dsdg = {'Real confidence': res_dsdg}
|
|
|
|
| 176 |
color_dsdg = (0, 255, 0) if cls_dsdg == 'Real' else (255, 0, 0)
|
| 177 |
+
img_dsdg = cv.rectangle(img.copy(), (x, y), (x2, y2), color_dsdg, 2)
|
| 178 |
+
cv.putText(img_dsdg, cls_dsdg, (x, y2 + 30),
|
| 179 |
cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
|
| 180 |
|
| 181 |
cls_deepix, cls_dsdg = [1 if cls_ == 'Real' else 0 for cls_ in [cls_deepix, cls_dsdg]]
|
|
|
|
| 188 |
def upload_to_s3(image_array, app_version, *labels):
|
| 189 |
folder = 'demo'
|
| 190 |
bucket_name = 'livenessng'
|
| 191 |
+
if image_array is None:
|
| 192 |
+
return 'Error. Take a photo first.'
|
| 193 |
+
elif labels[-2] == -1:
|
| 194 |
+
return 'Error. Run the detection first.'
|
| 195 |
+
elif labels[0] is None:
|
| 196 |
+
return 'Error. Select the true label first.'
|
| 197 |
|
| 198 |
# Initialize S3 client
|
| 199 |
s3 = boto3.client('s3')
|
|
|
|
| 220 |
demo = gr.Blocks()
|
| 221 |
|
| 222 |
with demo:
|
| 223 |
+
with gr.Row():
|
| 224 |
+
with gr.Column():
|
| 225 |
+
input_img = gr.Image(source='webcam', shape=None, type='numpy')
|
| 226 |
+
btn_run = gr.Button(value="Run")
|
| 227 |
+
with gr.Column():
|
| 228 |
+
outputs=[
|
| 229 |
+
gr.Image(label='DeePixBiS', type='numpy'),
|
| 230 |
+
gr.Label(num_top_classes=2, label='DeePixBiS'),
|
| 231 |
+
gr.Image(label='DSDG', type='numpy'),
|
| 232 |
+
gr.Label(num_top_classes=2, label='DSDG')]
|
| 233 |
+
with gr.Column():
|
| 234 |
+
radio = gr.Radio(
|
| 235 |
+
["Real", "Spoof", "None"], label="True label", type='index')
|
| 236 |
+
flag = gr.Button(value="Flag")
|
| 237 |
+
status = gr.Textbox()
|
| 238 |
+
example_block = gr.Examples(examples, [input_img], outputs+labels)
|
| 239 |
+
|
| 240 |
+
labels = [gr.Number(visible=False, value=-1), gr.Number(visible=False, value=-1)]
|
| 241 |
btn_run.click(inference, [input_img], outputs+labels)
|
|
|
|
| 242 |
app_version_block = gr.Textbox(value=app_version, visible=False)
|
| 243 |
+
flag.click(upload_to_s3, [input_img, app_version_block, radio]+labels, [status], show_progress=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
|
| 245 |
|
| 246 |
if __name__ == '__main__':
|