Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files
app.py
ADDED
|
@@ -0,0 +1,623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Codey Bryant 3.0 — SOTA RAG for Hugging Face Spaces
|
| 3 |
+
Maintains EXACT same architecture: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
import sys
|
| 8 |
+
import logging
|
| 9 |
+
from dataclasses import dataclass
|
| 10 |
+
from typing import List, Dict, Tuple, Optional, Iterator
|
| 11 |
+
from functools import lru_cache
|
| 12 |
+
from threading import Thread
|
| 13 |
+
import warnings
|
| 14 |
+
|
| 15 |
+
# Configure logging for Hugging Face Spaces
|
| 16 |
+
logging.basicConfig(
|
| 17 |
+
level=logging.INFO,
|
| 18 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 19 |
+
handlers=[
|
| 20 |
+
logging.StreamHandler(sys.stdout),
|
| 21 |
+
logging.FileHandler('/data/app.log')
|
| 22 |
+
]
|
| 23 |
+
)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
warnings.filterwarnings("ignore")
|
| 26 |
+
|
| 27 |
+
# Import core dependencies
|
| 28 |
+
import numpy as np
|
| 29 |
+
import torch
|
| 30 |
+
from datasets import load_dataset, Dataset
|
| 31 |
+
from sentence_transformers import SentenceTransformer
|
| 32 |
+
from rank_bm25 import BM25Okapi
|
| 33 |
+
from sklearn.cluster import MiniBatchKMeans
|
| 34 |
+
import spacy
|
| 35 |
+
from transformers import (
|
| 36 |
+
AutoTokenizer,
|
| 37 |
+
AutoModelForCausalLM,
|
| 38 |
+
GenerationConfig,
|
| 39 |
+
TextIteratorStreamer,
|
| 40 |
+
BitsAndBytesConfig,
|
| 41 |
+
)
|
| 42 |
+
import gradio as gr
|
| 43 |
+
import pickle
|
| 44 |
+
import json
|
| 45 |
+
|
| 46 |
+
# Try to import FAISS
|
| 47 |
+
try:
|
| 48 |
+
import faiss
|
| 49 |
+
FAISS_AVAILABLE = True
|
| 50 |
+
except ImportError:
|
| 51 |
+
FAISS_AVAILABLE = False
|
| 52 |
+
logger.warning("FAISS not available, using numpy fallback")
|
| 53 |
+
|
| 54 |
+
# Environment setup for Hugging Face Spaces
|
| 55 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 56 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 57 |
+
|
| 58 |
+
# Use persistent storage for Hugging Face Spaces
|
| 59 |
+
ARTIFACT_DIR = os.environ.get("ARTIFACT_DIR", "/data/artifacts")
|
| 60 |
+
os.makedirs(ARTIFACT_DIR, exist_ok=True)
|
| 61 |
+
|
| 62 |
+
# Paths for artifacts
|
| 63 |
+
LLM_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "llm_model")
|
| 64 |
+
EMBED_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "embed_model")
|
| 65 |
+
BM25_ARTIFACT_PATH = os.path.join(ARTIFACT_DIR, "bm25.pkl")
|
| 66 |
+
CORPUS_DATA_PATH = os.path.join(ARTIFACT_DIR, "corpus_data.json")
|
| 67 |
+
CORPUS_EMBED_PATH = os.path.join(ARTIFACT_DIR, "corpus_embeddings.npy")
|
| 68 |
+
ANSWER_EMBED_PATH = os.path.join(ARTIFACT_DIR, "answer_embeddings.npy")
|
| 69 |
+
FAISS_INDEX_PATH = os.path.join(ARTIFACT_DIR, "faiss_index.bin")
|
| 70 |
+
|
| 71 |
+
# Device configuration
|
| 72 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 73 |
+
if torch.cuda.is_available():
|
| 74 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 75 |
+
torch.backends.cudnn.benchmark = True
|
| 76 |
+
logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
|
| 77 |
+
else:
|
| 78 |
+
logger.info("Using CPU")
|
| 79 |
+
|
| 80 |
+
# Model configuration (EXACT SAME AS BEFORE)
|
| 81 |
+
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
| 82 |
+
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 83 |
+
MAX_CORPUS_SIZE = 600
|
| 84 |
+
|
| 85 |
+
# ========================
|
| 86 |
+
# 1) Dataset & Retrieval (EXACT SAME)
|
| 87 |
+
# ========================
|
| 88 |
+
|
| 89 |
+
def load_opc_datasets() -> Dict[str, Dataset]:
|
| 90 |
+
"""Load coding datasets - same function"""
|
| 91 |
+
try:
|
| 92 |
+
logger.info("Loading OPC datasets...")
|
| 93 |
+
ds_instruct = load_dataset("OpenCoder-LLM/opc-sft-stage2", "educational_instruct", split="train")
|
| 94 |
+
ds_evol = load_dataset("OpenCoder-LLM/opc-sft-stage2", "evol_instruct", split="train")
|
| 95 |
+
return {"educational_instruct": ds_instruct, "evol_instruct": ds_evol}
|
| 96 |
+
except Exception as e:
|
| 97 |
+
logger.warning(f"OPC failed ({e}), falling back to python_code_instructions...")
|
| 98 |
+
ds = load_dataset("iamtarun/python_code_instructions_18k_alpaca", split="train")
|
| 99 |
+
return {"python_code": ds}
|
| 100 |
+
|
| 101 |
+
def convo_to_io(example: Dict) -> Tuple[str, str]:
|
| 102 |
+
"""Convert conversation to input/output - same function"""
|
| 103 |
+
if "messages" in example:
|
| 104 |
+
msgs = example["messages"]
|
| 105 |
+
elif "conversations" in example:
|
| 106 |
+
msgs = example["conversations"]
|
| 107 |
+
else:
|
| 108 |
+
instr = example.get("instruction") or example.get("prompt") or ""
|
| 109 |
+
inp = example.get("input") or ""
|
| 110 |
+
out = example.get("output") or example.get("response") or ""
|
| 111 |
+
return (instr + "\n" + inp).strip(), out
|
| 112 |
+
|
| 113 |
+
user_text, assistant_text = "", ""
|
| 114 |
+
for i, m in enumerate(msgs):
|
| 115 |
+
role = (m.get("role") or m.get("from") or "").lower()
|
| 116 |
+
content = m.get("content") or m.get("value") or ""
|
| 117 |
+
if role in ("user", "human") and not user_text:
|
| 118 |
+
user_text = content
|
| 119 |
+
if role in ("assistant", "gpt") and user_text:
|
| 120 |
+
assistant_text = content
|
| 121 |
+
break
|
| 122 |
+
return user_text.strip(), assistant_text.strip()
|
| 123 |
+
|
| 124 |
+
@dataclass
|
| 125 |
+
class RetrievalSystem:
|
| 126 |
+
"""Retrieval system dataclass - same structure"""
|
| 127 |
+
embed_model: SentenceTransformer
|
| 128 |
+
bm25: BM25Okapi
|
| 129 |
+
corpus_texts: List[str]
|
| 130 |
+
corpus_answers: List[str]
|
| 131 |
+
corpus_embeddings: np.ndarray
|
| 132 |
+
answer_embeddings: np.ndarray
|
| 133 |
+
corpus_meta: List[Dict]
|
| 134 |
+
nlp: spacy.language.Language
|
| 135 |
+
faiss_index: Optional[any] = None
|
| 136 |
+
|
| 137 |
+
def build_retrieval_system(ds_map: Dict[str, Dataset]) -> RetrievalSystem:
|
| 138 |
+
"""Build retrieval system - EXACT SAME IMPLEMENTATION"""
|
| 139 |
+
# Try to load from artifacts first
|
| 140 |
+
required = [EMBED_ARTIFACT_PATH, BM25_ARTIFACT_PATH, CORPUS_DATA_PATH, CORPUS_EMBED_PATH, ANSWER_EMBED_PATH]
|
| 141 |
+
if FAISS_AVAILABLE:
|
| 142 |
+
required.append(FAISS_INDEX_PATH)
|
| 143 |
+
|
| 144 |
+
if all(os.path.exists(p) for p in required):
|
| 145 |
+
logger.info("Loading retrieval system from artifacts...")
|
| 146 |
+
embed_model = SentenceTransformer(EMBED_ARTIFACT_PATH, device=str(DEVICE))
|
| 147 |
+
with open(BM25_ARTIFACT_PATH, "rb") as f:
|
| 148 |
+
bm25 = pickle.load(f)
|
| 149 |
+
with open(CORPUS_DATA_PATH, "r", encoding="utf-8") as f:
|
| 150 |
+
data = json.load(f)
|
| 151 |
+
corpus_embeddings = np.load(CORPUS_EMBED_PATH)
|
| 152 |
+
answer_embeddings = np.load(ANSWER_EMBED_PATH)
|
| 153 |
+
faiss_index = faiss.read_index(FAISS_INDEX_PATH) if FAISS_AVAILABLE and os.path.exists(FAISS_INDEX_PATH) else None
|
| 154 |
+
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
|
| 155 |
+
return RetrievalSystem(
|
| 156 |
+
embed_model=embed_model, bm25=bm25,
|
| 157 |
+
corpus_texts=data["texts"], corpus_answers=data["answers"],
|
| 158 |
+
corpus_embeddings=corpus_embeddings, answer_embeddings=answer_embeddings,
|
| 159 |
+
corpus_meta=data["meta"], nlp=nlp, faiss_index=faiss_index
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
# Build from scratch (same implementation)
|
| 163 |
+
logger.info("Building retrieval system with answer-space support...")
|
| 164 |
+
all_questions, all_answers, all_metas = [], [], []
|
| 165 |
+
for name, ds in ds_map.items():
|
| 166 |
+
for ex in ds.select(range(min(len(ds), 1500))):
|
| 167 |
+
q, a = convo_to_io(ex)
|
| 168 |
+
if q and a and 50 < len(a) < 2000:
|
| 169 |
+
all_questions.append(q)
|
| 170 |
+
all_answers.append(a)
|
| 171 |
+
all_metas.append({"intent": name, "answer": a})
|
| 172 |
+
|
| 173 |
+
embed_model = SentenceTransformer(EMBED_MODEL, device=str(DEVICE))
|
| 174 |
+
question_embeddings = embed_model.encode(all_questions, batch_size=64, show_progress_bar=True, normalize_embeddings=True)
|
| 175 |
+
answer_embeddings = embed_model.encode(all_answers, batch_size=64, show_progress_bar=True, normalize_embeddings=True)
|
| 176 |
+
|
| 177 |
+
# Clustering to reduce size (same)
|
| 178 |
+
if len(all_questions) > MAX_CORPUS_SIZE:
|
| 179 |
+
kmeans = MiniBatchKMeans(n_clusters=MAX_CORPUS_SIZE, random_state=42, batch_size=1000)
|
| 180 |
+
labels = kmeans.fit_predict(answer_embeddings)
|
| 181 |
+
selected = []
|
| 182 |
+
for i in range(MAX_CORPUS_SIZE):
|
| 183 |
+
mask = labels == i
|
| 184 |
+
if mask.any():
|
| 185 |
+
idx = np.where(mask)[0]
|
| 186 |
+
dists = np.linalg.norm(answer_embeddings[idx] - kmeans.cluster_centers_[i], axis=1)
|
| 187 |
+
selected.append(idx[np.argmin(dists)])
|
| 188 |
+
idxs = selected
|
| 189 |
+
else:
|
| 190 |
+
idxs = list(range(len(all_questions)))
|
| 191 |
+
|
| 192 |
+
texts = [all_questions[i] for i in idxs]
|
| 193 |
+
answers = [all_answers[i] for i in idxs]
|
| 194 |
+
metas = [all_metas[i] for i in idxs]
|
| 195 |
+
q_embs = question_embeddings[idxs]
|
| 196 |
+
a_embs = answer_embeddings[idxs]
|
| 197 |
+
|
| 198 |
+
tokenized = [t.lower().split() for t in texts]
|
| 199 |
+
bm25 = BM25Okapi(tokenized)
|
| 200 |
+
|
| 201 |
+
faiss_index = None
|
| 202 |
+
if FAISS_AVAILABLE:
|
| 203 |
+
faiss_index = faiss.IndexFlatIP(a_embs.shape[1])
|
| 204 |
+
faiss_index.add(a_embs.astype('float32'))
|
| 205 |
+
|
| 206 |
+
# Save everything
|
| 207 |
+
embed_model.save(EMBED_ARTIFACT_PATH)
|
| 208 |
+
with open(BM25_ARTIFACT_PATH, "wb") as f:
|
| 209 |
+
pickle.dump(bm25, f)
|
| 210 |
+
with open(CORPUS_DATA_PATH, "w", encoding="utf-8") as f:
|
| 211 |
+
json.dump({"texts": texts, "answers": answers, "meta": metas}, f)
|
| 212 |
+
np.save(CORPUS_EMBED_PATH, q_embs)
|
| 213 |
+
np.save(ANSWER_EMBED_PATH, a_embs)
|
| 214 |
+
if faiss_index:
|
| 215 |
+
faiss.write_index(faiss_index, FAISS_INDEX_PATH)
|
| 216 |
+
|
| 217 |
+
nlp = spacy.load("en_core_web_sm", disable=["parser", "ner"])
|
| 218 |
+
return RetrievalSystem(
|
| 219 |
+
embed_model=embed_model, bm25=bm25, corpus_texts=texts, corpus_answers=answers,
|
| 220 |
+
corpus_embeddings=q_embs, answer_embeddings=a_embs, corpus_meta=metas,
|
| 221 |
+
nlp=nlp, faiss_index=faiss_index
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
# ========================
|
| 225 |
+
# 2) Generative Core (EXACT SAME)
|
| 226 |
+
# ========================
|
| 227 |
+
|
| 228 |
+
@dataclass
|
| 229 |
+
class GenerativeCore:
|
| 230 |
+
"""Generative core dataclass - same structure"""
|
| 231 |
+
model: AutoModelForCausalLM
|
| 232 |
+
tokenizer: AutoTokenizer
|
| 233 |
+
generation_config: GenerationConfig
|
| 234 |
+
|
| 235 |
+
def build_generative_core():
|
| 236 |
+
"""Build generative core - EXACT SAME IMPLEMENTATION"""
|
| 237 |
+
# Always download fresh from HuggingFace for reliability
|
| 238 |
+
print("Downloading TinyLlama with 4-bit quantization...")
|
| 239 |
+
|
| 240 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 241 |
+
if tokenizer.pad_token is None:
|
| 242 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 243 |
+
|
| 244 |
+
tokenizer.chat_template = (
|
| 245 |
+
"{% for message in messages %}"
|
| 246 |
+
"{{'<|'+message['role']+'|>\\n'+message['content']+'</s>\\n'}}"
|
| 247 |
+
"{% endfor %}"
|
| 248 |
+
"{% if add_generation_prompt %}"
|
| 249 |
+
"<|assistant|>\n"
|
| 250 |
+
"{% endif %}"
|
| 251 |
+
)
|
| 252 |
+
|
| 253 |
+
quantization_config = None
|
| 254 |
+
if torch.cuda.is_available():
|
| 255 |
+
quantization_config = BitsAndBytesConfig(
|
| 256 |
+
load_in_4bit=True,
|
| 257 |
+
bnb_4bit_compute_dtype=torch.float32,
|
| 258 |
+
bnb_4bit_use_double_quant=True,
|
| 259 |
+
bnb_4bit_quant_type="nf4"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 263 |
+
MODEL_NAME,
|
| 264 |
+
quantization_config=quantization_config,
|
| 265 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 266 |
+
low_cpu_mem_usage=True
|
| 267 |
+
)
|
| 268 |
+
model.eval()
|
| 269 |
+
|
| 270 |
+
gen_cfg = GenerationConfig(
|
| 271 |
+
max_new_tokens=300,
|
| 272 |
+
temperature=0.7,
|
| 273 |
+
top_p=0.9,
|
| 274 |
+
do_sample=True,
|
| 275 |
+
repetition_penalty=1.15,
|
| 276 |
+
pad_token_id=tokenizer.pad_token_id
|
| 277 |
+
)
|
| 278 |
+
|
| 279 |
+
# Save for future use (optional)
|
| 280 |
+
if not os.path.exists(LLM_ARTIFACT_PATH):
|
| 281 |
+
os.makedirs(LLM_ARTIFACT_PATH, exist_ok=True)
|
| 282 |
+
tokenizer.save_pretrained(LLM_ARTIFACT_PATH)
|
| 283 |
+
gen_cfg.save_pretrained(LLM_ARTIFACT_PATH)
|
| 284 |
+
|
| 285 |
+
return GenerativeCore(model, tokenizer, gen_cfg)
|
| 286 |
+
|
| 287 |
+
# ========================
|
| 288 |
+
# 3) SOTA Enhanced Retrieval (EXACT SAME)
|
| 289 |
+
# ========================
|
| 290 |
+
|
| 291 |
+
class HybridCodeAssistant:
|
| 292 |
+
"""Main assistant class - EXACT SAME IMPLEMENTATION"""
|
| 293 |
+
def __init__(self):
|
| 294 |
+
self.retrieval = build_retrieval_system(load_opc_datasets())
|
| 295 |
+
self.generator = build_generative_core()
|
| 296 |
+
logger.info("Codey Bryant 3.0 ready with HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval!")
|
| 297 |
+
|
| 298 |
+
def generate_hyde(self, query: str) -> str:
|
| 299 |
+
"""Generate HyDE - same implementation"""
|
| 300 |
+
prompt = f"""Write a concise, direct Python code example or explanation that answers this question.
|
| 301 |
+
Only output the answer, no extra text.
|
| 302 |
+
|
| 303 |
+
Question: {query}
|
| 304 |
+
|
| 305 |
+
Answer:"""
|
| 306 |
+
inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
| 307 |
+
with torch.no_grad():
|
| 308 |
+
out = self.generator.model.generate(**inputs, max_new_tokens=128, temperature=0.3, do_sample=True)
|
| 309 |
+
return self.generator.tokenizer.decode(out[0], skip_special_tokens=True).split("Answer:")[-1].strip()
|
| 310 |
+
|
| 311 |
+
def rewrite_query(self, query: str) -> str:
|
| 312 |
+
"""Rewrite query - same implementation"""
|
| 313 |
+
prompt = f"""Rewrite this vague or casual programming question into a clear, specific one for better code retrieval.
|
| 314 |
+
|
| 315 |
+
Original: {query}
|
| 316 |
+
|
| 317 |
+
Improved:"""
|
| 318 |
+
inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
| 319 |
+
with torch.no_grad():
|
| 320 |
+
out = self.generator.model.generate(**inputs, max_new_tokens=64, temperature=0.1)
|
| 321 |
+
return self.generator.tokenizer.decode(out[0], skip_special_tokens=True).split("Improved:")[-1].strip()
|
| 322 |
+
|
| 323 |
+
def retrieve_enhanced(self, query: str, k: int = 3) -> List[Tuple[str, Dict, float]]:
|
| 324 |
+
"""Enhanced retrieval - EXACT SAME IMPLEMENTATION"""
|
| 325 |
+
# Use list of tuples instead of set to avoid hashability issues with dicts
|
| 326 |
+
results = []
|
| 327 |
+
|
| 328 |
+
def add_results(q_text: str, weight: float = 1.0):
|
| 329 |
+
try:
|
| 330 |
+
# Determine embedding space (answer for HyDE/long texts, question otherwise)
|
| 331 |
+
use_answer_space = "HyDE" in q_text or len(q_text.split()) > 20
|
| 332 |
+
target_embs = self.retrieval.answer_embeddings if use_answer_space else self.retrieval.corpus_embeddings
|
| 333 |
+
|
| 334 |
+
# Encode query
|
| 335 |
+
q_emb = self.retrieval.embed_model.encode(q_text, normalize_embeddings=True)
|
| 336 |
+
|
| 337 |
+
if self.retrieval.faiss_index is not None and use_answer_space:
|
| 338 |
+
# FAISS on answer space
|
| 339 |
+
query_vec = q_emb.astype('float32').reshape(1, -1)
|
| 340 |
+
scores_top, indices_top = self.retrieval.faiss_index.search(query_vec, min(k * 3, len(self.retrieval.corpus_texts)))
|
| 341 |
+
scores = scores_top[0]
|
| 342 |
+
idxs = indices_top[0]
|
| 343 |
+
else:
|
| 344 |
+
# Numpy fallback or question space
|
| 345 |
+
scores = np.dot(target_embs, q_emb)
|
| 346 |
+
idxs = np.argsort(-scores)[:k*3]
|
| 347 |
+
|
| 348 |
+
# Add BM25 if not answer space
|
| 349 |
+
if not use_answer_space:
|
| 350 |
+
tokenized_query = q_text.lower().split()
|
| 351 |
+
bm25_scores = self.retrieval.bm25.get_scores(tokenized_query)
|
| 352 |
+
if bm25_scores.max() > 0:
|
| 353 |
+
bm25_scores = (bm25_scores - bm25_scores.min()) / (bm25_scores.max() - bm25_scores.min())
|
| 354 |
+
else:
|
| 355 |
+
bm25_scores = np.zeros_like(bm25_scores)
|
| 356 |
+
scores = 0.3 * bm25_scores + 0.7 * scores # Hybrid
|
| 357 |
+
|
| 358 |
+
# Collect candidates (avoid duplicates by checking text)
|
| 359 |
+
seen_texts = set()
|
| 360 |
+
for score, idx in zip(scores, idxs):
|
| 361 |
+
if score > 0.15 and idx < len(self.retrieval.corpus_texts):
|
| 362 |
+
text = self.retrieval.corpus_texts[idx]
|
| 363 |
+
if text not in seen_texts:
|
| 364 |
+
seen_texts.add(text)
|
| 365 |
+
results.append((text, self.retrieval.corpus_meta[idx], float(score * weight)))
|
| 366 |
+
except Exception as e:
|
| 367 |
+
logger.error(f"add_results failed for '{q_text}': {e}")
|
| 368 |
+
|
| 369 |
+
# 1. Original query
|
| 370 |
+
add_results(query, weight=1.0)
|
| 371 |
+
|
| 372 |
+
# 2. Rewritten query
|
| 373 |
+
try:
|
| 374 |
+
rw = self.rewrite_query(query)
|
| 375 |
+
if len(rw) > 8 and rw != query:
|
| 376 |
+
add_results(rw, weight=1.2)
|
| 377 |
+
except Exception as e:
|
| 378 |
+
logger.warning(f"Rewrite failed: {e}")
|
| 379 |
+
|
| 380 |
+
# 3. HyDE (strong weight in answer space!)
|
| 381 |
+
try:
|
| 382 |
+
hyde = self.generate_hyde(query)
|
| 383 |
+
if len(hyde) > 20:
|
| 384 |
+
add_results(hyde, weight=1.5) # Note: No " HyDE" suffix needed now
|
| 385 |
+
except Exception as e:
|
| 386 |
+
logger.warning(f"HyDE failed: {e}")
|
| 387 |
+
|
| 388 |
+
# 4. Multi-query variants (lighter weight)
|
| 389 |
+
variants = [
|
| 390 |
+
f"Python code for: {query}",
|
| 391 |
+
f"Fix error: {query}",
|
| 392 |
+
f"Explain in Python: {query}",
|
| 393 |
+
f"Best way to {query} in Python",
|
| 394 |
+
]
|
| 395 |
+
for v in variants:
|
| 396 |
+
add_results(v, weight=0.8)
|
| 397 |
+
|
| 398 |
+
# Rerank by similarity to original (no set needed)
|
| 399 |
+
if not results:
|
| 400 |
+
return []
|
| 401 |
+
|
| 402 |
+
q_emb = self.retrieval.embed_model.encode(query, normalize_embeddings=True)
|
| 403 |
+
final = []
|
| 404 |
+
for text, meta, score in results:
|
| 405 |
+
text_emb = self.retrieval.embed_model.encode(text, normalize_embeddings=True)
|
| 406 |
+
sim = float(np.dot(q_emb, text_emb))
|
| 407 |
+
final.append((text, meta, score + 0.3 * sim))
|
| 408 |
+
|
| 409 |
+
final.sort(key=lambda x: x[2], reverse=True)
|
| 410 |
+
return final[:k]
|
| 411 |
+
|
| 412 |
+
def answer_stream(self, text: str) -> Iterator[str]:
|
| 413 |
+
"""Stream answer - same implementation"""
|
| 414 |
+
retrieved = self.retrieve_enhanced(text, k=3)
|
| 415 |
+
|
| 416 |
+
context = ""
|
| 417 |
+
if retrieved and retrieved[0][2] > 0.3:
|
| 418 |
+
q, meta, _ = retrieved[0]
|
| 419 |
+
ans = meta["answer"][:200]
|
| 420 |
+
context = f"Reference example:\nQ: {q}\nA: {ans}\n\n"
|
| 421 |
+
|
| 422 |
+
messages = [
|
| 423 |
+
{"role": "system", "content": "You are a concise, accurate Python coding assistant. Use the reference if helpful." + context},
|
| 424 |
+
{"role": "user", "content": text}
|
| 425 |
+
]
|
| 426 |
+
|
| 427 |
+
prompt = self.generator.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 428 |
+
inputs = self.generator.tokenizer(prompt, return_tensors="pt").to(DEVICE)
|
| 429 |
+
|
| 430 |
+
streamer = TextIteratorStreamer(self.generator.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 431 |
+
thread = Thread(target=self.generator.model.generate, kwargs=dict(
|
| 432 |
+
**inputs, streamer=streamer, generation_config=self.generator.generation_config
|
| 433 |
+
))
|
| 434 |
+
thread.start()
|
| 435 |
+
|
| 436 |
+
for token in streamer:
|
| 437 |
+
yield token
|
| 438 |
+
thread.join()
|
| 439 |
+
|
| 440 |
+
# ========================
|
| 441 |
+
# 4) Gradio UI (Optimized for Hugging Face)
|
| 442 |
+
# ========================
|
| 443 |
+
|
| 444 |
+
ASSISTANT: Optional[HybridCodeAssistant] = None
|
| 445 |
+
|
| 446 |
+
def initialize_assistant():
|
| 447 |
+
"""Initialize assistant with progress tracking"""
|
| 448 |
+
global ASSISTANT
|
| 449 |
+
if ASSISTANT is None:
|
| 450 |
+
yield "Initializing Codey Bryant 3.0..."
|
| 451 |
+
yield "Loading retrieval system..."
|
| 452 |
+
ASSISTANT = HybridCodeAssistant()
|
| 453 |
+
yield "Codey Bryant 3.0 Ready!"
|
| 454 |
+
yield "SOTA RAG Features: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval"
|
| 455 |
+
yield "Ask coding questions like: 'it's not working', 'help with error', 'make it faster'"
|
| 456 |
+
else:
|
| 457 |
+
yield "Assistant already initialized!"
|
| 458 |
+
|
| 459 |
+
def chat(message: str, history: list):
|
| 460 |
+
"""Chat function with error handling"""
|
| 461 |
+
if ASSISTANT is None:
|
| 462 |
+
yield "Please click 'Initialize Assistant' first!"
|
| 463 |
+
return
|
| 464 |
+
|
| 465 |
+
# Append user message
|
| 466 |
+
history.append([message, ""])
|
| 467 |
+
yield history
|
| 468 |
+
|
| 469 |
+
# Stream response
|
| 470 |
+
try:
|
| 471 |
+
response = ""
|
| 472 |
+
for token in ASSISTANT.answer_stream(message):
|
| 473 |
+
response += token
|
| 474 |
+
history[-1][1] = response
|
| 475 |
+
yield history
|
| 476 |
+
except Exception as e:
|
| 477 |
+
logger.error(f"Chat error: {e}")
|
| 478 |
+
history[-1][1] = f"Error: {str(e)}"
|
| 479 |
+
yield history
|
| 480 |
+
|
| 481 |
+
def create_ui():
|
| 482 |
+
"""Create Gradio UI optimized for Hugging Face"""
|
| 483 |
+
with gr.Blocks(
|
| 484 |
+
title="Codey Bryant 3.0 - SOTA RAG Coding Assistant",
|
| 485 |
+
theme=gr.themes.Soft(),
|
| 486 |
+
css="""
|
| 487 |
+
.gradio-container { max-width: 1200px; margin: auto; }
|
| 488 |
+
.chatbot { min-height: 500px; }
|
| 489 |
+
.status-box { padding: 20px; border-radius: 10px; background: #f0f8ff; }
|
| 490 |
+
"""
|
| 491 |
+
) as demo:
|
| 492 |
+
gr.Markdown("""
|
| 493 |
+
# 🤖 Codey Bryant 3.0
|
| 494 |
+
## **SOTA RAG Coding Assistant**
|
| 495 |
+
|
| 496 |
+
### **Advanced Features:**
|
| 497 |
+
- **HyDE** (Hypothetical Document Embeddings)
|
| 498 |
+
- **Query Rewriting** for vague queries
|
| 499 |
+
- **Multi-Query** retrieval
|
| 500 |
+
- **Answer-Space Retrieval**
|
| 501 |
+
|
| 502 |
+
### **Handles vague questions like:**
|
| 503 |
+
- "it's not working"
|
| 504 |
+
- "help with error"
|
| 505 |
+
- "make it faster"
|
| 506 |
+
- "why error"
|
| 507 |
+
- "how to implement"
|
| 508 |
+
|
| 509 |
+
### **Powered by:**
|
| 510 |
+
- TinyLlama 1.1B (4-bit quantized)
|
| 511 |
+
- Hybrid retrieval (FAISS + BM25)
|
| 512 |
+
- OPC coding datasets
|
| 513 |
+
""")
|
| 514 |
+
|
| 515 |
+
with gr.Row():
|
| 516 |
+
with gr.Column(scale=1):
|
| 517 |
+
init_btn = gr.Button(
|
| 518 |
+
"Initialize Assistant",
|
| 519 |
+
variant="primary",
|
| 520 |
+
size="lg"
|
| 521 |
+
)
|
| 522 |
+
clear_btn = gr.Button("Clear Chat", size="lg")
|
| 523 |
+
|
| 524 |
+
with gr.Column(scale=4):
|
| 525 |
+
status = gr.Markdown(
|
| 526 |
+
"### Status: Click 'Initialize Assistant' to start",
|
| 527 |
+
elem_classes="status-box"
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
chatbot = gr.Chatbot(
|
| 531 |
+
label="Chat with Codey",
|
| 532 |
+
height=500,
|
| 533 |
+
show_label=True,
|
| 534 |
+
avatar_images=(None, "🤖"),
|
| 535 |
+
bubble_full_width=False
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
with gr.Row():
|
| 539 |
+
msg = gr.Textbox(
|
| 540 |
+
placeholder="Ask anything about Python coding...",
|
| 541 |
+
label="Your Question",
|
| 542 |
+
lines=3,
|
| 543 |
+
scale=5,
|
| 544 |
+
container=False
|
| 545 |
+
)
|
| 546 |
+
submit_btn = gr.Button("Send", variant="secondary", scale=1)
|
| 547 |
+
|
| 548 |
+
# Examples
|
| 549 |
+
gr.Examples(
|
| 550 |
+
examples=[
|
| 551 |
+
["How to read a CSV file in Python?"],
|
| 552 |
+
["Why am I getting 'list index out of range' error?"],
|
| 553 |
+
["Make this function faster..."],
|
| 554 |
+
["Help, my code isn't working!"],
|
| 555 |
+
["Best way to sort a dictionary by value?"]
|
| 556 |
+
],
|
| 557 |
+
inputs=msg,
|
| 558 |
+
label="Try these examples:"
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
# Event handlers
|
| 562 |
+
init_btn.click(
|
| 563 |
+
initialize_assistant,
|
| 564 |
+
outputs=status
|
| 565 |
+
)
|
| 566 |
+
|
| 567 |
+
def submit_message(message, history):
|
| 568 |
+
return "", history + [[message, None]]
|
| 569 |
+
|
| 570 |
+
msg.submit(
|
| 571 |
+
submit_message,
|
| 572 |
+
[msg, chatbot],
|
| 573 |
+
[msg, chatbot],
|
| 574 |
+
queue=False
|
| 575 |
+
).then(
|
| 576 |
+
chat,
|
| 577 |
+
[msg, chatbot],
|
| 578 |
+
chatbot
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
submit_btn.click(
|
| 582 |
+
submit_message,
|
| 583 |
+
[msg, chatbot],
|
| 584 |
+
[msg, chatbot],
|
| 585 |
+
queue=False
|
| 586 |
+
).then(
|
| 587 |
+
chat,
|
| 588 |
+
[msg, chatbot],
|
| 589 |
+
chatbot
|
| 590 |
+
)
|
| 591 |
+
|
| 592 |
+
clear_btn.click(lambda: None, None, chatbot, queue=False)
|
| 593 |
+
|
| 594 |
+
# Footer
|
| 595 |
+
gr.Markdown("""
|
| 596 |
+
---
|
| 597 |
+
*Codey Bryant 3.0 uses TinyLlama 1.1B with 4-bit quantization. Responses may take a few seconds.*
|
| 598 |
+
""")
|
| 599 |
+
|
| 600 |
+
return demo
|
| 601 |
+
|
| 602 |
+
# ========================
|
| 603 |
+
# 5) Main Entry Point
|
| 604 |
+
# ========================
|
| 605 |
+
|
| 606 |
+
if __name__ == "__main__":
|
| 607 |
+
# Configure for Hugging Face Spaces
|
| 608 |
+
server_name = os.environ.get("GRADIO_SERVER_NAME", "0.0.0.0")
|
| 609 |
+
server_port = int(os.environ.get("GRADIO_SERVER_PORT", 7860))
|
| 610 |
+
|
| 611 |
+
# Create and launch the demo
|
| 612 |
+
demo = create_ui()
|
| 613 |
+
|
| 614 |
+
logger.info(f"Starting Codey Bryant 3.0 on {server_name}:{server_port}")
|
| 615 |
+
logger.info("SOTA RAG Architecture: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval")
|
| 616 |
+
|
| 617 |
+
demo.launch(
|
| 618 |
+
server_name=server_name,
|
| 619 |
+
server_port=server_port,
|
| 620 |
+
share=False, # Set to True if you want a public link
|
| 621 |
+
debug=False,
|
| 622 |
+
show_error=True
|
| 623 |
+
)
|
build.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Build script optimized for Hugging Face Spaces deployment
|
| 3 |
+
Maintains the exact same SOTA RAG architecture
|
| 4 |
+
"""
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import logging
|
| 8 |
+
import pickle
|
| 9 |
+
import json
|
| 10 |
+
import numpy as np
|
| 11 |
+
import torch
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
|
| 14 |
+
# Add parent directory to path
|
| 15 |
+
sys.path.append('.')
|
| 16 |
+
|
| 17 |
+
from app import (
|
| 18 |
+
load_opc_datasets,
|
| 19 |
+
build_retrieval_system,
|
| 20 |
+
ARTIFACT_DIR,
|
| 21 |
+
FAISS_AVAILABLE,
|
| 22 |
+
MODEL_NAME,
|
| 23 |
+
EMBED_MODEL,
|
| 24 |
+
MAX_CORPUS_SIZE
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Configure logging
|
| 28 |
+
logging.basicConfig(
|
| 29 |
+
level=logging.INFO,
|
| 30 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
| 31 |
+
handlers=[
|
| 32 |
+
logging.StreamHandler(sys.stdout),
|
| 33 |
+
logging.FileHandler('/data/build.log')
|
| 34 |
+
]
|
| 35 |
+
)
|
| 36 |
+
logger = logging.getLogger(__name__)
|
| 37 |
+
|
| 38 |
+
def check_artifacts():
|
| 39 |
+
"""Check if artifacts already exist"""
|
| 40 |
+
required_files = [
|
| 41 |
+
"corpus_data.json",
|
| 42 |
+
"corpus_embeddings.npy",
|
| 43 |
+
"answer_embeddings.npy",
|
| 44 |
+
"bm25.pkl"
|
| 45 |
+
]
|
| 46 |
+
|
| 47 |
+
if FAISS_AVAILABLE:
|
| 48 |
+
required_files.append("faiss_index.bin")
|
| 49 |
+
|
| 50 |
+
all_exist = all(os.path.exists(os.path.join(ARTIFACT_DIR, f)) for f in required_files)
|
| 51 |
+
return all_exist
|
| 52 |
+
|
| 53 |
+
def build_retrieval_with_progress():
|
| 54 |
+
"""Build retrieval system with progress tracking"""
|
| 55 |
+
logger.info("Building SOTA RAG Retrieval System for Coding Assistant")
|
| 56 |
+
logger.info(f"Architecture: HyDE + Query Rewriting + Multi-Query + Answer-Space Retrieval")
|
| 57 |
+
logger.info(f"Embedding Model: {EMBED_MODEL}")
|
| 58 |
+
logger.info(f"Max Corpus Size: {MAX_CORPUS_SIZE}")
|
| 59 |
+
|
| 60 |
+
# Load datasets
|
| 61 |
+
logger.info("Loading coding datasets...")
|
| 62 |
+
ds_map = load_opc_datasets()
|
| 63 |
+
|
| 64 |
+
# Build retrieval system (using the exact same function from app.py)
|
| 65 |
+
logger.info("Building retrieval system...")
|
| 66 |
+
retrieval_system = build_retrieval_system(ds_map)
|
| 67 |
+
|
| 68 |
+
logger.info("Retrieval system built successfully!")
|
| 69 |
+
logger.info(f" - Corpus size: {len(retrieval_system.corpus_texts)}")
|
| 70 |
+
logger.info(f" - Embedding dimension: {retrieval_system.corpus_embeddings.shape[1]}")
|
| 71 |
+
logger.info(f" - FAISS index: {'Yes' if retrieval_system.faiss_index else 'No'}")
|
| 72 |
+
|
| 73 |
+
return retrieval_system
|
| 74 |
+
|
| 75 |
+
def prepare_llm_artifacts():
|
| 76 |
+
"""Prepare LLM artifacts without downloading the full model"""
|
| 77 |
+
logger.info("🤖 Preparing LLM configuration...")
|
| 78 |
+
|
| 79 |
+
from transformers import AutoTokenizer, GenerationConfig
|
| 80 |
+
|
| 81 |
+
llm_path = os.path.join(ARTIFACT_DIR, "llm_model")
|
| 82 |
+
os.makedirs(llm_path, exist_ok=True)
|
| 83 |
+
|
| 84 |
+
# Download and save tokenizer
|
| 85 |
+
logger.info(f"📥 Downloading tokenizer for {MODEL_NAME}...")
|
| 86 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 87 |
+
|
| 88 |
+
if tokenizer.pad_token is None:
|
| 89 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 90 |
+
|
| 91 |
+
# Use the exact same chat template from app.py
|
| 92 |
+
tokenizer.chat_template = (
|
| 93 |
+
"{% for message in messages %}"
|
| 94 |
+
"{{'<|'+message['role']+'|>\\n'+message['content']+'</s>\\n'}}"
|
| 95 |
+
"{% endfor %}"
|
| 96 |
+
"{% if add_generation_prompt %}"
|
| 97 |
+
"<|assistant|>\n"
|
| 98 |
+
"{% endif %}"
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Use the exact same generation config from app.py
|
| 102 |
+
generation_config = GenerationConfig(
|
| 103 |
+
max_new_tokens=300,
|
| 104 |
+
temperature=0.7,
|
| 105 |
+
top_p=0.9,
|
| 106 |
+
do_sample=True,
|
| 107 |
+
repetition_penalty=1.15,
|
| 108 |
+
pad_token_id=tokenizer.pad_token_id
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Save tokenizer and config
|
| 112 |
+
tokenizer.save_pretrained(llm_path)
|
| 113 |
+
generation_config.save_pretrained(llm_path)
|
| 114 |
+
|
| 115 |
+
# Create minimal config file
|
| 116 |
+
config = {
|
| 117 |
+
"_name_or_path": MODEL_NAME,
|
| 118 |
+
"architectures": ["LlamaForCausalLM"],
|
| 119 |
+
"model_type": "llama",
|
| 120 |
+
"torch_dtype": "float16",
|
| 121 |
+
"quantization_config": {
|
| 122 |
+
"load_in_4bit": True,
|
| 123 |
+
"bnb_4bit_compute_dtype": "float32",
|
| 124 |
+
"bnb_4bit_use_double_quant": True,
|
| 125 |
+
"bnb_4bit_quant_type": "nf4"
|
| 126 |
+
} if torch.cuda.is_available() else {}
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
config_path = os.path.join(llm_path, "config.json")
|
| 130 |
+
with open(config_path, "w") as f:
|
| 131 |
+
json.dump(config, f, indent=2)
|
| 132 |
+
|
| 133 |
+
logger.info(f"LLM configuration saved to {llm_path}")
|
| 134 |
+
logger.info("Note: Full model will be downloaded at runtime with 4-bit quantization")
|
| 135 |
+
|
| 136 |
+
def verify_artifacts():
|
| 137 |
+
"""Verify all artifacts are properly built"""
|
| 138 |
+
logger.info("Verifying artifacts...")
|
| 139 |
+
|
| 140 |
+
files_to_check = {
|
| 141 |
+
"corpus_data.json": "Corpus data",
|
| 142 |
+
"corpus_embeddings.npy": "Question embeddings",
|
| 143 |
+
"answer_embeddings.npy": "Answer embeddings",
|
| 144 |
+
"bm25.pkl": "BM25 index",
|
| 145 |
+
"faiss_index.bin": "FAISS index"
|
| 146 |
+
}
|
| 147 |
+
|
| 148 |
+
for file, description in files_to_check.items():
|
| 149 |
+
path = os.path.join(ARTIFACT_DIR, file)
|
| 150 |
+
if os.path.exists(path):
|
| 151 |
+
size_mb = os.path.getsize(path) / (1024 * 1024)
|
| 152 |
+
logger.info(f" ✓ {description}: {size_mb:.2f} MB")
|
| 153 |
+
else:
|
| 154 |
+
if file != "faiss_index.bin" or FAISS_AVAILABLE:
|
| 155 |
+
logger.warning(f" ✗ Missing: {description}")
|
| 156 |
+
|
| 157 |
+
def main():
|
| 158 |
+
"""Main build process"""
|
| 159 |
+
logger.info("=" * 60)
|
| 160 |
+
logger.info("🤖 Codey Bryant 3.0 - SOTA RAG Build Script")
|
| 161 |
+
logger.info("=" * 60)
|
| 162 |
+
|
| 163 |
+
# Create artifacts directory
|
| 164 |
+
os.makedirs(ARTIFACT_DIR, exist_ok=True)
|
| 165 |
+
|
| 166 |
+
# Check if we need to rebuild
|
| 167 |
+
if check_artifacts():
|
| 168 |
+
logger.info("Artifacts already exist. Skipping build.")
|
| 169 |
+
logger.info("Delete artifacts to force rebuild.")
|
| 170 |
+
else:
|
| 171 |
+
logger.info("Building fresh artifacts...")
|
| 172 |
+
|
| 173 |
+
# Build retrieval system
|
| 174 |
+
build_retrieval_with_progress()
|
| 175 |
+
|
| 176 |
+
# Prepare LLM artifacts
|
| 177 |
+
prepare_llm_artifacts()
|
| 178 |
+
|
| 179 |
+
logger.info("Build complete!")
|
| 180 |
+
|
| 181 |
+
# Verify artifacts
|
| 182 |
+
verify_artifacts()
|
| 183 |
+
|
| 184 |
+
# Show total size
|
| 185 |
+
logger.info("\nArtifact Summary:")
|
| 186 |
+
total_size = 0
|
| 187 |
+
for root, dirs, files in os.walk(ARTIFACT_DIR):
|
| 188 |
+
for file in files:
|
| 189 |
+
filepath = os.path.join(root, file)
|
| 190 |
+
size_mb = os.path.getsize(filepath) / (1024 * 1024)
|
| 191 |
+
total_size += size_mb
|
| 192 |
+
|
| 193 |
+
logger.info(f" Total size: {total_size:.2f} MB")
|
| 194 |
+
logger.info("=" * 60)
|
| 195 |
+
logger.info("Ready to launch Codey Bryant!")
|
| 196 |
+
logger.info(" Run: python app.py")
|
| 197 |
+
logger.info("=" * 60)
|
| 198 |
+
|
| 199 |
+
if __name__ == "__main__":
|
| 200 |
+
main()
|