Vision-to-VibeVoice-en / vibevoice /processor /vibevoice_streaming_processor.py
prithivMLmods's picture
Upload modular files (#1)
a37899d verified
import math
import warnings
from typing import List, Optional, Union, Dict, Any, Tuple
import os
import re
import numpy as np
import torch
from transformers.tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType, logging
from .vibevoice_tokenizer_processor import AudioNormalizer
logger = logging.get_logger(__name__)
class VibeVoiceStreamingProcessor:
r"""
Constructs a VibeVoice Streaming processor which wraps a VibeVoice tokenizer and audio processor into a single processor.
Args:
tokenizer (`VibeVoiceTextTokenizer` or `VibeVoiceTextTokenizerFast`):
The tokenizer for text processing.
audio_processor (`VibeVoiceTokenizerProcessor`):
The audio processor for speech processing.
speech_tok_compress_ratio (`int`, *optional*, defaults to 3200):
The compression ratio for speech tokenization.
db_normalize (`bool`, *optional*, defaults to True):
Whether to apply decibel normalization to audio inputs.
"""
def __init__(self, tokenizer=None, audio_processor=None, speech_tok_compress_ratio=3200, db_normalize=True, **kwargs):
self.tokenizer = tokenizer
self.audio_processor = audio_processor
self.speech_tok_compress_ratio = speech_tok_compress_ratio
self.db_normalize = db_normalize
self.audio_normalizer = AudioNormalizer() if db_normalize else None
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
"""
Instantiate a VibeVoiceStreamingProcessor from a pretrained VibeVoice Streaming processor.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model
- a path to a *directory* containing processor config
Returns:
[`VibeVoiceStreamingProcessor`]: The processor object instantiated from pretrained model.
"""
import os
import json
from transformers.utils import cached_file
from .vibevoice_tokenizer_processor import VibeVoiceTokenizerProcessor
from vibevoice.modular.modular_vibevoice_text_tokenizer import (
VibeVoiceTextTokenizer,
VibeVoiceTextTokenizerFast
)
# Try to load from local path first, then from HF hub
config_path = os.path.join(pretrained_model_name_or_path, "preprocessor_config.json")
config = None
if os.path.exists(config_path):
# Local path exists
with open(config_path, 'r') as f:
config = json.load(f)
else:
# Try to load from HF hub
try:
config_file = cached_file(
pretrained_model_name_or_path,
"preprocessor_config.json",
**kwargs
)
with open(config_file, 'r') as f:
config = json.load(f)
except Exception as e:
logger.warning(f"Could not load preprocessor_config.json from {pretrained_model_name_or_path}: {e}")
logger.warning("Using default configuration")
config = {
"speech_tok_compress_ratio": 3200,
"db_normalize": True,
}
# Extract main processor parameters
speech_tok_compress_ratio = config.get("speech_tok_compress_ratio", 3200)
db_normalize = config.get("db_normalize", True)
# Load tokenizer - try from model path first, then fallback to Qwen
language_model_pretrained_name = config.get("language_model_pretrained_name", None) or kwargs.pop("language_model_pretrained_name", "Qwen/Qwen2.5-1.5B")
logger.info(f"Loading tokenizer from {language_model_pretrained_name}")
if 'qwen' in language_model_pretrained_name.lower():
tokenizer = VibeVoiceTextTokenizerFast.from_pretrained(
language_model_pretrained_name,
**kwargs
)
else:
raise ValueError(f"Unsupported tokenizer type for {language_model_pretrained_name}. Supported types: Qwen, Llama, Gemma.")
# Load audio processor
if "audio_processor" in config:
# Create audio processor from config
audio_config = config["audio_processor"]
audio_processor = VibeVoiceTokenizerProcessor(
sampling_rate=audio_config.get("sampling_rate", 24000),
normalize_audio=audio_config.get("normalize_audio", True),
target_dB_FS=audio_config.get("target_dB_FS", -25),
eps=audio_config.get("eps", 1e-6),
)
else:
# Create default audio processor
audio_processor = VibeVoiceTokenizerProcessor()
# Create and return the processor
return cls(
tokenizer=tokenizer,
audio_processor=audio_processor,
speech_tok_compress_ratio=speech_tok_compress_ratio,
db_normalize=db_normalize,
)
def save_pretrained(self, save_directory: Union[str, os.PathLike], **kwargs):
"""
Save a processor to a directory, so that it can be re-loaded using the
[`~VibeVoiceStreamingProcessor.from_pretrained`] class method.
Args:
save_directory (`str` or `os.PathLike`):
Directory where the processor will be saved.
"""
import os
import json
os.makedirs(save_directory, exist_ok=True)
# Save processor configuration
processor_config = {
"processor_class": "VibeVoiceStreamingProcessor",
"speech_tok_compress_ratio": self.speech_tok_compress_ratio,
"db_normalize": self.db_normalize,
"audio_processor": {
"feature_extractor_type": "VibeVoiceTokenizerProcessor",
"sampling_rate": getattr(self.audio_processor, 'sampling_rate', 24000),
"normalize_audio": getattr(self.audio_processor, 'normalize_audio', True),
"target_dB_FS": getattr(self.audio_processor, 'target_dB_FS', -25),
"eps": getattr(self.audio_processor, 'eps', 1e-6),
}
}
config_path = os.path.join(save_directory, "preprocessor_config.json")
with open(config_path, 'w') as f:
json.dump(processor_config, f, indent=2)
logger.info(f"Processor configuration saved in {config_path}")
def __call__(self) -> BatchEncoding:
"""
Note:
This method is intentionally not implemented in the streaming processor.
Use `process_input_with_cached_prompt` for streaming use cases.
"""
raise NotImplementedError(
"VibeVoiceStreamingProcessor.__call__ is not implemented. "
"Use process_input_with_cached_prompt for streaming inputs."
)
def process_input_with_cached_prompt(
self,
text: Optional[str] = None,
cached_prompt: Optional[Dict[str, Any]] = None,
padding: Union[bool, str, PaddingStrategy] = True,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to process one text script based on cached prompt. The function currently only supports single examples.
Args:
text (`str`):
The input text to process.
cached_prompt (`Dict[str, Any]`, *optional*):
The cached prompt to use for processing. It contains the kv cache of the voice prompt.
padding (`bool`, `str` or `PaddingStrategy`, defaults to `True`):
Whether to pad sequences to the same length
truncation (`bool`, `str` or `TruncationStrategy`, defaults to `False`):
Whether to truncate sequences
max_length (`int`, *optional*):
Maximum length of the returned sequences
return_tensors (`str` or `TensorType`, *optional*):
If set, will return tensors of a particular framework
return_attention_mask (`bool`, defaults to `True`):
Whether to return the attention mask
Returns:
`BatchEncoding`: A BatchEncoding with the following fields:
- **input_ids** -- List of token id sequences or tensor
- **attention_mask** -- List of attention masks or tensor
- **tts_lm_input_ids** -- List of token id sequences or tensor used for TTS LM
- **tts_lm_attention_mask** -- List of attention masks or tensor used for TTS LM
- **tts_text_ids** -- List of token id sequences or tensor for TTS text input
- **speech_tensors** -- Padded speech inputs (if voice_samples provided)
- **speech_masks** -- Speech masks (if voice_samples provided)
- **speech_input_mask** -- Boolean masks indicating speech token positions
"""
# Only support single example
texts = [text]
cached_prompts = [cached_prompt]
is_batched = False
# Process each input
all_encodings = []
for text_input, cached_prompt_input in zip(texts, cached_prompts):
script_tokens = self.tokenizer.encode(text_input.strip() + "\n", add_special_tokens=False)
input_id_length = cached_prompt_input['lm']['last_hidden_state'].size(1)
tts_lm_input_id_length = cached_prompt_input['tts_lm']['last_hidden_state'].size(1)
# psudo input ids and masks
input_ids = [self.tokenizer.pad_id] * input_id_length
tts_lm_input_ids = [self.tokenizer.pad_id] * tts_lm_input_id_length
speech_input_mask = [False] * tts_lm_input_id_length
encoding = {
"input_ids": input_ids,
"tts_lm_input_ids": tts_lm_input_ids,
"tts_text_ids": script_tokens,
"speech_inputs": None,
"speech_input_mask": speech_input_mask,
}
all_encodings.append(encoding)
# Combine batch
batch_encoding = self._batch_encode(
all_encodings,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
)
return batch_encoding
def _batch_encode(
self,
encodings: List[Dict[str, Any]],
padding: Union[bool, str, PaddingStrategy] = True,
truncation: Union[bool, str, TruncationStrategy] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: bool = True,
) -> BatchEncoding:
"""Combine multiple encodings into a batch with padding."""
# Extract input_ids and create attention_mask
input_ids_list = [enc["input_ids"] for enc in encodings]
tts_lm_input_ids_list = [enc["tts_lm_input_ids"] for enc in encodings]
tts_text_ids_list = [enc["tts_text_ids"] for enc in encodings]
speech_input_masks_list = [enc["speech_input_mask"] for enc in encodings]
attention_masks = [[1] * len(ids) for ids in input_ids_list] if return_attention_mask else None
tts_lm_attention_masks = [[1] * len(ids) for ids in tts_lm_input_ids_list] if return_attention_mask else None
# Process speech inputs
all_speech_inputs = []
has_speech = False
for enc in encodings:
if enc["speech_inputs"] is not None:
all_speech_inputs.extend(enc["speech_inputs"])
has_speech = True
# Prepare batch encoding
batch_encoding = BatchEncoding()
# Handle tensor conversion
if return_tensors is not None:
batch_encoding["input_ids"] = torch.tensor(input_ids_list, dtype=torch.long)
batch_encoding["tts_lm_input_ids"] = torch.tensor(tts_lm_input_ids_list, dtype=torch.long)
batch_encoding["tts_text_ids"] = torch.tensor(tts_text_ids_list, dtype=torch.long)
if return_attention_mask and attention_masks is not None:
batch_encoding["attention_mask"] = torch.tensor(attention_masks, dtype=torch.long)
batch_encoding["tts_lm_attention_mask"] = torch.tensor(tts_lm_attention_masks, dtype=torch.long)
batch_encoding["speech_input_mask"] = torch.tensor(speech_input_masks_list, dtype=torch.bool)
else:
batch_encoding["input_ids"] = input_ids_list
batch_encoding["tts_lm_input_ids"] = tts_lm_input_ids_list
batch_encoding["tts_text_ids"] = tts_text_ids_list
if return_attention_mask and attention_masks is not None:
batch_encoding["attention_mask"] = attention_masks
batch_encoding["tts_lm_attention_mask"] = tts_lm_attention_masks
batch_encoding["speech_input_mask"] = speech_input_masks_list
# Process speech tensors if present
if has_speech:
speech_dict = self.prepare_speech_inputs(
all_speech_inputs,
return_tensors=return_tensors,
)
batch_encoding["speech_tensors"] = speech_dict["padded_speeches"]
batch_encoding["speech_masks"] = speech_dict["speech_masks"]
else:
batch_encoding["speech_tensors"] = None
batch_encoding["speech_masks"] = None
return batch_encoding
def prepare_speech_inputs(
self,
speech_inputs: List[np.ndarray],
return_tensors: Optional[Union[str, TensorType]] = None,
device: Optional[Union[str, torch.device]] = None,
dtype: Optional[torch.dtype] = None,
) -> Dict[str, Any]:
"""
Prepare speech inputs for model consumption.
Args:
speech_inputs: List of speech arrays
return_tensors: Output tensor type
device: Device to place tensors on
dtype: Data type for tensors
Returns:
Dictionary with padded_speeches and speech_masks
"""
if not speech_inputs:
return {"padded_speeches": None, "speech_masks": None}
# Calculate sequence lengths
vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) for s in speech_inputs]
# vae_tok_seqlens = [math.ceil(s.shape[0] / self.speech_tok_compress_ratio) if s.ndim == 1 else s.shape[0] for s in speech_inputs]
max_speech_length = max(s.shape[0] for s in speech_inputs)
# Pad speeches
if speech_inputs[0].ndim == 1:
padded_speeches = np.full((len(speech_inputs), max_speech_length), fill_value=0, dtype=np.float32)
else:
padded_speeches = np.full((len(speech_inputs), max_speech_length, speech_inputs[0].shape[-1]), fill_value=0, dtype=np.float32)
speech_masks = np.zeros((len(speech_inputs), max(vae_tok_seqlens)), dtype=np.bool_)
for i, (speech, vae_tok_length) in enumerate(zip(speech_inputs, vae_tok_seqlens)):
padded_speeches[i, :len(speech)] = speech
speech_masks[i, :vae_tok_length] = True
result = {
"padded_speeches": padded_speeches,
"speech_masks": speech_masks,
}
# Convert to tensors if requested
if return_tensors == "pt":
result["padded_speeches"] = torch.tensor(padded_speeches, device=device, dtype=dtype or torch.float32)
result["speech_masks"] = torch.tensor(speech_masks, device=device, dtype=torch.bool)
return result
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.batch_decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to VibeVoiceTextTokenizer's [`~PreTrainedTokenizer.decode`].
Please refer to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
"""
Return the list of inputs accepted by the model.
"""
tokenizer_input_names = self.tokenizer.model_input_names
audio_processor_input_names = self.audio_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + audio_processor_input_names + ["speech_inputs", "speech_input_mask"]))
def save_audio(self,
audio: Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]],
output_path: str = "output.wav",
sampling_rate: Optional[int] = None,
normalize: bool = False,
batch_prefix: str = "audio_",
) -> str:
"""
Save audio data to a file.
Args:
audio (Union[torch.Tensor, np.ndarray, List[Union[torch.Tensor, np.ndarray]]]):
The audio data to save. Can be a single tensor/array or a list of them.
output_path (str, optional): Path to save the audio file. Defaults to "output.wav".
sampling_rate (int, optional): Sampling rate for the audio. If None, uses the processor's default.
normalize (bool, optional): Whether to normalize the audio before saving. Defaults to False.
batch_prefix (str, optional): Prefix for batch audio files. Defaults to "audio_".
Returns:
str: The path to the saved audio file.
"""
return self.audio_processor.save_audio(audio, output_path=output_path, sampling_rate=sampling_rate, normalize=normalize, batch_prefix=batch_prefix)
__all__ = [
"VibeVoiceStreamingProcessor",
]