Spaces:
Running
Running
Uppalapati
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,9 +2,9 @@ import os
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from transformers import AutoTokenizer, AutoModel
|
| 5 |
-
|
| 6 |
import logging
|
| 7 |
-
import spaces
|
| 8 |
|
| 9 |
# Try to import flash attention (optional)
|
| 10 |
try:
|
|
@@ -19,8 +19,6 @@ except ImportError:
|
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
| 22 |
-
app = Flask(__name__)
|
| 23 |
-
|
| 24 |
# Qwen3-Embedding-4B model for retrieval
|
| 25 |
MODEL_NAME = "Qwen/Qwen3-Embedding-4B"
|
| 26 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -31,7 +29,7 @@ tokenizer = None
|
|
| 31 |
model = None
|
| 32 |
|
| 33 |
def initialize_model():
|
| 34 |
-
"""Initialize model
|
| 35 |
global tokenizer, model
|
| 36 |
|
| 37 |
if tokenizer is None:
|
|
@@ -44,7 +42,6 @@ def initialize_model():
|
|
| 44 |
if model is None:
|
| 45 |
logger.info(f"Loading {MODEL_NAME} on {DEVICE}")
|
| 46 |
|
| 47 |
-
# Configure model loading with optional flash attention
|
| 48 |
model_kwargs = {
|
| 49 |
"trust_remote_code": True,
|
| 50 |
"torch_dtype": torch.float16 if DEVICE == "cuda" else torch.float32
|
|
@@ -59,12 +56,15 @@ def initialize_model():
|
|
| 59 |
model.eval()
|
| 60 |
logger.info("✅ Model loaded successfully")
|
| 61 |
|
| 62 |
-
# CRITICAL: This must be a TOP-LEVEL function with @spaces.GPU decorator
|
| 63 |
@spaces.GPU
|
| 64 |
-
def encode_texts_gpu(
|
| 65 |
"""
|
| 66 |
Encode texts to embeddings using Qwen3-Embedding-4B
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
"""
|
| 69 |
global tokenizer, model
|
| 70 |
|
|
@@ -72,8 +72,11 @@ def encode_texts_gpu(texts, batch_size=16):
|
|
| 72 |
if model is None or tokenizer is None:
|
| 73 |
initialize_model()
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
embeddings = []
|
| 79 |
|
|
@@ -93,7 +96,6 @@ def encode_texts_gpu(texts, batch_size=16):
|
|
| 93 |
|
| 94 |
with torch.no_grad():
|
| 95 |
outputs = model(**inputs)
|
| 96 |
-
# Use EOS token embedding for Qwen3
|
| 97 |
eos_token_id = tokenizer.eos_token_id
|
| 98 |
sequence_lengths = (inputs['input_ids'] == eos_token_id).long().argmax(-1) - 1
|
| 99 |
|
|
@@ -103,82 +105,73 @@ def encode_texts_gpu(texts, batch_size=16):
|
|
| 103 |
batch_embeddings.append(embedding)
|
| 104 |
|
| 105 |
batch_embeddings = np.array(batch_embeddings)
|
| 106 |
-
|
| 107 |
-
# Normalize embeddings
|
| 108 |
batch_embeddings = batch_embeddings / np.linalg.norm(batch_embeddings, axis=1, keepdims=True)
|
| 109 |
|
| 110 |
embeddings.extend(batch_embeddings)
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
return jsonify({
|
| 117 |
-
"status": "healthy",
|
| 118 |
"model": MODEL_NAME,
|
| 119 |
-
"
|
| 120 |
-
"
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
@app.route("/embed", methods=["POST"])
|
| 125 |
-
def embed_texts():
|
| 126 |
-
"""Embed texts and return embeddings"""
|
| 127 |
-
try:
|
| 128 |
-
data = request.get_json()
|
| 129 |
-
|
| 130 |
-
if not data or "texts" not in data:
|
| 131 |
-
return jsonify({"error": "Missing 'texts' field"}), 400
|
| 132 |
-
|
| 133 |
-
texts = data["texts"]
|
| 134 |
-
if not isinstance(texts, list):
|
| 135 |
-
texts = [texts]
|
| 136 |
-
|
| 137 |
-
logger.info(f"Embedding {len(texts)} texts")
|
| 138 |
-
|
| 139 |
-
# Call the GPU-decorated function
|
| 140 |
-
embeddings = encode_texts_gpu(texts)
|
| 141 |
-
|
| 142 |
-
return jsonify({
|
| 143 |
-
"embeddings": [embedding.tolist() for embedding in embeddings],
|
| 144 |
-
"model": MODEL_NAME,
|
| 145 |
-
"dimension": len(embeddings[0]) if embeddings else 0,
|
| 146 |
-
"count": len(embeddings)
|
| 147 |
-
})
|
| 148 |
-
|
| 149 |
-
except Exception as e:
|
| 150 |
-
logger.error(f"Embedding error: {str(e)}")
|
| 151 |
-
return jsonify({"error": str(e)}), 500
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
if __name__ == "__main__":
|
| 180 |
-
|
| 181 |
-
logger.info("⚡ Model will load on first GPU request (ZeroGPU lazy loading)")
|
| 182 |
-
|
| 183 |
-
port = int(os.environ.get("PORT", 7860))
|
| 184 |
-
app.run(host="0.0.0.0", port=port)
|
|
|
|
| 2 |
import torch
|
| 3 |
import numpy as np
|
| 4 |
from transformers import AutoTokenizer, AutoModel
|
| 5 |
+
import gradio as gr
|
| 6 |
import logging
|
| 7 |
+
import spaces
|
| 8 |
|
| 9 |
# Try to import flash attention (optional)
|
| 10 |
try:
|
|
|
|
| 19 |
logging.basicConfig(level=logging.INFO)
|
| 20 |
logger = logging.getLogger(__name__)
|
| 21 |
|
|
|
|
|
|
|
| 22 |
# Qwen3-Embedding-4B model for retrieval
|
| 23 |
MODEL_NAME = "Qwen/Qwen3-Embedding-4B"
|
| 24 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 29 |
model = None
|
| 30 |
|
| 31 |
def initialize_model():
|
| 32 |
+
"""Initialize model"""
|
| 33 |
global tokenizer, model
|
| 34 |
|
| 35 |
if tokenizer is None:
|
|
|
|
| 42 |
if model is None:
|
| 43 |
logger.info(f"Loading {MODEL_NAME} on {DEVICE}")
|
| 44 |
|
|
|
|
| 45 |
model_kwargs = {
|
| 46 |
"trust_remote_code": True,
|
| 47 |
"torch_dtype": torch.float16 if DEVICE == "cuda" else torch.float32
|
|
|
|
| 56 |
model.eval()
|
| 57 |
logger.info("✅ Model loaded successfully")
|
| 58 |
|
|
|
|
| 59 |
@spaces.GPU
|
| 60 |
+
def encode_texts_gpu(texts_str, batch_size=16):
|
| 61 |
"""
|
| 62 |
Encode texts to embeddings using Qwen3-Embedding-4B
|
| 63 |
+
Args:
|
| 64 |
+
texts_str: Either a single text string or multiple texts separated by '|||'
|
| 65 |
+
batch_size: Batch size for encoding
|
| 66 |
+
Returns:
|
| 67 |
+
JSON string with embeddings
|
| 68 |
"""
|
| 69 |
global tokenizer, model
|
| 70 |
|
|
|
|
| 72 |
if model is None or tokenizer is None:
|
| 73 |
initialize_model()
|
| 74 |
|
| 75 |
+
# Parse input - support both single text and multiple texts
|
| 76 |
+
if '|||' in texts_str:
|
| 77 |
+
texts = [t.strip() for t in texts_str.split('|||')]
|
| 78 |
+
else:
|
| 79 |
+
texts = [texts_str]
|
| 80 |
|
| 81 |
embeddings = []
|
| 82 |
|
|
|
|
| 96 |
|
| 97 |
with torch.no_grad():
|
| 98 |
outputs = model(**inputs)
|
|
|
|
| 99 |
eos_token_id = tokenizer.eos_token_id
|
| 100 |
sequence_lengths = (inputs['input_ids'] == eos_token_id).long().argmax(-1) - 1
|
| 101 |
|
|
|
|
| 105 |
batch_embeddings.append(embedding)
|
| 106 |
|
| 107 |
batch_embeddings = np.array(batch_embeddings)
|
|
|
|
|
|
|
| 108 |
batch_embeddings = batch_embeddings / np.linalg.norm(batch_embeddings, axis=1, keepdims=True)
|
| 109 |
|
| 110 |
embeddings.extend(batch_embeddings)
|
| 111 |
|
| 112 |
+
# Format output
|
| 113 |
+
import json
|
| 114 |
+
result = {
|
| 115 |
+
"embeddings": [emb.tolist() for emb in embeddings],
|
|
|
|
|
|
|
| 116 |
"model": MODEL_NAME,
|
| 117 |
+
"dimension": len(embeddings[0]) if embeddings else 0,
|
| 118 |
+
"count": len(embeddings)
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
return json.dumps(result, indent=2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
# Create Gradio interface
|
| 124 |
+
with gr.Blocks(title="Qwen3-Embedding-4B API") as demo:
|
| 125 |
+
gr.Markdown("""
|
| 126 |
+
# Qwen3-Embedding-4B Embedding Service
|
| 127 |
+
|
| 128 |
+
This service generates embeddings using Qwen3-Embedding-4B (2560 dimensions).
|
| 129 |
+
|
| 130 |
+
**Usage:**
|
| 131 |
+
- Single text: Enter your text directly
|
| 132 |
+
- Multiple texts: Separate texts with `|||` (e.g., `text1|||text2|||text3`)
|
| 133 |
+
""")
|
| 134 |
+
|
| 135 |
+
with gr.Row():
|
| 136 |
+
with gr.Column():
|
| 137 |
+
text_input = gr.Textbox(
|
| 138 |
+
label="Text Input",
|
| 139 |
+
placeholder="Enter text or multiple texts separated by '|||'",
|
| 140 |
+
lines=5
|
| 141 |
+
)
|
| 142 |
+
batch_size_input = gr.Slider(
|
| 143 |
+
minimum=1,
|
| 144 |
+
maximum=64,
|
| 145 |
+
value=16,
|
| 146 |
+
step=1,
|
| 147 |
+
label="Batch Size"
|
| 148 |
+
)
|
| 149 |
+
submit_btn = gr.Button("Generate Embeddings", variant="primary")
|
| 150 |
+
|
| 151 |
+
with gr.Column():
|
| 152 |
+
output = gr.JSON(label="Embeddings Output")
|
| 153 |
+
|
| 154 |
+
submit_btn.click(
|
| 155 |
+
fn=encode_texts_gpu,
|
| 156 |
+
inputs=[text_input, batch_size_input],
|
| 157 |
+
outputs=output
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
gr.Markdown("""
|
| 161 |
+
### API Usage
|
| 162 |
+
You can also call this Space via API:
|
| 163 |
+
```
|
| 164 |
+
from gradio_client import Client
|
| 165 |
+
|
| 166 |
+
client = Client("YOUR_USERNAME/YOUR_SPACE_NAME")
|
| 167 |
+
result = client.predict(
|
| 168 |
+
texts_str="Your text here",
|
| 169 |
+
batch_size=16,
|
| 170 |
+
api_name="/predict"
|
| 171 |
+
)
|
| 172 |
+
print(result)
|
| 173 |
+
```
|
| 174 |
+
""")
|
| 175 |
|
| 176 |
if __name__ == "__main__":
|
| 177 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|