Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
+
import torch
|
| 4 |
+
import os
|
| 5 |
+
from pydantic import BaseModel
|
| 6 |
+
|
| 7 |
+
# ✅ Force Hugging Face cache to /tmp (writable in Spaces)
|
| 8 |
+
os.environ["HF_HOME"] = "/tmp"
|
| 9 |
+
os.environ["TRANSFORMERS_CACHE"] = "/tmp"
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
model_id = "rabiyulfahim/qa_python_gpt2"
|
| 13 |
+
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir="/tmp")
|
| 15 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, cache_dir="/tmp")
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
app = FastAPI(title="QA GPT2 API", description="Serving HuggingFace model with FastAPI")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Request schema
|
| 22 |
+
class QueryRequest(BaseModel):
|
| 23 |
+
question: str
|
| 24 |
+
max_new_tokens: int = 50
|
| 25 |
+
temperature: float = 0.7
|
| 26 |
+
top_p: float = 0.9
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@app.get("/")
|
| 30 |
+
def home():
|
| 31 |
+
return {"message": "Welcome to QA GPT2 API 🚀"}
|
| 32 |
+
|
| 33 |
+
@app.get("/ask")
|
| 34 |
+
def ask(question: str, max_new_tokens: int = 50):
|
| 35 |
+
inputs = tokenizer(question, return_tensors="pt")
|
| 36 |
+
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
|
| 37 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 38 |
+
return {"question": question, "answer": answer}
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
# Health check endpoint
|
| 43 |
+
@app.get("/health")
|
| 44 |
+
def health():
|
| 45 |
+
return {"status": "ok"}
|
| 46 |
+
|
| 47 |
+
# Inference endpoint
|
| 48 |
+
@app.post("/predict")
|
| 49 |
+
def predict(request: QueryRequest):
|
| 50 |
+
inputs = tokenizer(request.question, return_tensors="pt")
|
| 51 |
+
outputs = model.generate(
|
| 52 |
+
**inputs,
|
| 53 |
+
max_new_tokens=request.max_new_tokens,
|
| 54 |
+
do_sample=True,
|
| 55 |
+
temperature=0.7,
|
| 56 |
+
top_p=0.9,
|
| 57 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 58 |
+
return_dict_in_generate=True
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
answer = tokenizer.decode(outputs.sequences[0], skip_special_tokens=True)
|
| 62 |
+
return {
|
| 63 |
+
"question": request.question,
|
| 64 |
+
"answer": answer
|
| 65 |
+
}
|