Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import seaborn as sns | |
| import matplotlib.pyplot as plt | |
| import pandas as pd | |
| # Load data | |
| def load_data(): | |
| df = pd.read_csv("processed_data.csv") # Replace with your dataset | |
| return df | |
| # Create Streamlit app | |
| def app(): | |
| # Title for the app | |
| st.title("Retail Data Insights Dashboard") | |
| # Load data | |
| df = load_data() | |
| # Key Metrics from the data | |
| total_orders = df['Transaction ID'].nunique() | |
| total_products_sold = df['Quantity'].sum() | |
| total_revenue = df['Total Amount'].sum() | |
| most_popular_product_cat = df['Product Category'].value_counts().idxmax() | |
| most_frequent_age_cat = df['Age Category'].value_counts().idxmax() | |
| # Display metrics in the sidebar | |
| st.sidebar.header("Key Metrics") | |
| st.sidebar.metric("Total Orders", total_orders) | |
| st.sidebar.metric("Total Products Sold", total_products_sold) | |
| st.sidebar.metric("Total Revenue", f"${total_revenue:,.2f}") | |
| st.sidebar.metric("Most Popular Product Category", most_popular_product_cat) | |
| st.sidebar.metric("Most Frequent Age Category", most_frequent_age_cat) | |
| plots = [ | |
| {"title": "Total Products Sold by Product and Age Categories", "x": "Product Category", "hue": "Age Category"}, | |
| {"title": "Monthly Revenue Trends by Product Category", "x": "month", "y": "Total Amount", "hue": "Product Category", "estimator": "sum", "marker": "o"}, | |
| {"title": "Monthly Revenue Trends by Age Category", "x": "month", "y": "Total Amount", "hue": "Age Category", "estimator": "sum", "marker": "o"}, | |
| {"title": "Revenue by Product Category", "x": "Product Category", "y": "Total Amount", "estimator": "sum"}, | |
| ] | |
| for plot in plots: | |
| st.header(plot["title"]) | |
| fig, ax = plt.subplots() | |
| if "Total Products" in plot["title"]: | |
| sns.countplot(data=df, x=plot["x"], hue=plot["hue"], ax=ax) | |
| if "Monthly Revenue" in plot["title"]: | |
| sns.lineplot(data=df, x=plot["x"], y=plot["y"], hue=plot["hue"], estimator=plot["estimator"], errorbar=None, marker=plot["marker"], ax=ax) | |
| if "Revenue by Product" in plot["title"]: | |
| sns.barplot(data=df, x=plot["x"], y=plot["y"], estimator=plot["estimator"], errorbar=None, ax=ax) | |
| ax.set_xlabel(" ".join(plot["x"].split("_")).capitalize()) | |
| if "y" in plot.keys(): | |
| ax.set_ylabel(" ".join(plot["y"].split("_")).capitalize()) | |
| else: | |
| ax.set_ylabel("Quantity") | |
| ax.legend(bbox_to_anchor=(1,1)) | |
| st.pyplot(fig) | |
| plt.show() | |
| if __name__ == "__main__": | |
| app() | |