Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,60 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from langchain_community.vectorstores import Chroma
|
| 4 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 6 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 7 |
+
from langchain.chains import RetrievalQA
|
| 8 |
+
from langchain.llms import HuggingFaceHub
|
| 9 |
+
from langchain.prompts import PromptTemplate
|
| 10 |
+
from huggingface_hub import login
|
| 11 |
+
|
| 12 |
+
# اختياري: تسجيل الدخول إذا كنت تستخدم مفتاح API
|
| 13 |
+
# login(token="your_huggingface_token")
|
| 14 |
+
|
| 15 |
+
def process_pdf_and_answer(pdf_path, question):
|
| 16 |
+
# تحميل ملف PDF
|
| 17 |
+
loader = PyPDFLoader(pdf_path)
|
| 18 |
+
pages = loader.load()
|
| 19 |
+
|
| 20 |
+
# تقسيم النصوص
|
| 21 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
| 22 |
+
texts = text_splitter.split_documents(pages)
|
| 23 |
+
|
| 24 |
+
# التضمين Embeddings
|
| 25 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 26 |
+
vectorstore = Chroma.from_documents(texts, embedding=embeddings)
|
| 27 |
+
|
| 28 |
+
# إعداد LLM
|
| 29 |
+
llm = HuggingFaceHub(repo_id="HuggingFaceH4/zephyr-7b-beta", model_kwargs={"temperature": 0.1, "max_new_tokens": 512})
|
| 30 |
+
|
| 31 |
+
# إعداد RAG
|
| 32 |
+
qa_chain = RetrievalQA.from_chain_type(llm=llm, retriever=vectorstore.as_retriever(), return_source_documents=True)
|
| 33 |
+
|
| 34 |
+
# تنفيذ السؤال
|
| 35 |
+
result = qa_chain({"query": question})
|
| 36 |
+
answer = result["result"]
|
| 37 |
+
return answer
|
| 38 |
+
|
| 39 |
+
# واجهة Gradio
|
| 40 |
+
with gr.Blocks() as demo:
|
| 41 |
+
gr.Markdown("## 🧠 مساعد PDF الذكي")
|
| 42 |
+
|
| 43 |
+
with gr.Row():
|
| 44 |
+
file_input = gr.File(label="📄 ارفع ملف PDF", type="filepath", file_types=[".pdf"])
|
| 45 |
+
|
| 46 |
+
question_input = gr.Textbox(label="❓ اكتب سؤالك هنا", placeholder="ما هو محتوى الفصل الأول؟")
|
| 47 |
+
output = gr.Textbox(label="📝 الإجابة", lines=10)
|
| 48 |
+
|
| 49 |
+
submit_btn = gr.Button("🔍 استخرج الإجابة")
|
| 50 |
+
|
| 51 |
+
def handle_submit(file, question):
|
| 52 |
+
if file is None or question.strip() == "":
|
| 53 |
+
return "يرجى رفع ملف PDF وكتابة سؤال."
|
| 54 |
+
return process_pdf_and_answer(file, question)
|
| 55 |
+
|
| 56 |
+
submit_btn.click(handle_submit, inputs=[file_input, question_input], outputs=output)
|
| 57 |
+
|
| 58 |
+
# لتشغيل التطبيق
|
| 59 |
+
if __name__ == "__main__":
|
| 60 |
+
demo.launch()
|