Spaces:
Sleeping
Sleeping
Create generate_indexes.py
Browse files- generate_indexes.py +163 -0
generate_indexes.py
ADDED
|
@@ -0,0 +1,163 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import json
|
| 4 |
+
import pickle
|
| 5 |
+
from typing import List, Dict
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import faiss
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import tabula
|
| 11 |
+
from sentence_transformers import SentenceTransformer
|
| 12 |
+
from rank_bm25 import BM25Okapi
|
| 13 |
+
|
| 14 |
+
# ---------------- Config ----------------
|
| 15 |
+
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 16 |
+
|
| 17 |
+
PDF_PATH = "MakeMyTrip_Financial_Statements.pdf"
|
| 18 |
+
OUT_DIR = "data/index_merged"
|
| 19 |
+
|
| 20 |
+
# Paths for saved chunks & indices
|
| 21 |
+
CHUNKS_100_PATH = os.path.join(OUT_DIR, "chunks_100.json")
|
| 22 |
+
CHUNKS_400_PATH = os.path.join(OUT_DIR, "chunks_400.json")
|
| 23 |
+
CHUNKS_MERGED_PATH = os.path.join(OUT_DIR, "chunks_merged.json")
|
| 24 |
+
|
| 25 |
+
FAISS_PATH = os.path.join(OUT_DIR, "faiss_merged.index")
|
| 26 |
+
BM25_PATH = os.path.join(OUT_DIR, "bm25_merged.pkl")
|
| 27 |
+
META_PATH = os.path.join(OUT_DIR, "meta_merged.pkl")
|
| 28 |
+
|
| 29 |
+
# ---------------- Utils ----------------
|
| 30 |
+
_tok_pat = re.compile(r"[a-z0-9]+", re.I)
|
| 31 |
+
def simple_tokenize(text: str):
|
| 32 |
+
return _tok_pat.findall((text or "").lower())
|
| 33 |
+
|
| 34 |
+
def create_chunks(texts: List[str], max_tokens: int) -> List[str]:
|
| 35 |
+
"""Simple word-based tokenizer to split texts into chunks."""
|
| 36 |
+
chunks, current_chunk, current_tokens = [], [], 0
|
| 37 |
+
for text in texts:
|
| 38 |
+
tokens = re.findall(r"\w+", text)
|
| 39 |
+
if current_tokens + len(tokens) > max_tokens:
|
| 40 |
+
chunks.append(" ".join(current_chunk))
|
| 41 |
+
current_chunk, current_tokens = [], 0
|
| 42 |
+
current_chunk.append(text)
|
| 43 |
+
current_tokens += len(tokens)
|
| 44 |
+
if current_chunk:
|
| 45 |
+
chunks.append(" ".join(current_chunk))
|
| 46 |
+
return chunks
|
| 47 |
+
|
| 48 |
+
def extract_tables_from_pdf(pdf_path: str, pages="all") -> List[Dict]:
|
| 49 |
+
"""Extract tables from financial PDF into structured row-year-value dicts."""
|
| 50 |
+
tables = tabula.read_pdf(
|
| 51 |
+
pdf_path,
|
| 52 |
+
pages=pages,
|
| 53 |
+
multiple_tables=True,
|
| 54 |
+
pandas_options={'dtype': str}
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
table_rows = []
|
| 58 |
+
row_id = 0
|
| 59 |
+
|
| 60 |
+
for df in tables:
|
| 61 |
+
if df.empty:
|
| 62 |
+
continue
|
| 63 |
+
|
| 64 |
+
df = df.replace(r'\n', ' ', regex=True).fillna("")
|
| 65 |
+
|
| 66 |
+
headers = list(df.iloc[0])
|
| 67 |
+
if any(re.match(r"20\d{2}", str(c)) for c in headers):
|
| 68 |
+
df.columns = [c.strip() for c in headers]
|
| 69 |
+
df = df.drop(0).reset_index(drop=True)
|
| 70 |
+
|
| 71 |
+
for _, row in df.iterrows():
|
| 72 |
+
metric = str(row.iloc[0]).strip()
|
| 73 |
+
if not metric or metric.lower() in ["note", ""]:
|
| 74 |
+
continue
|
| 75 |
+
|
| 76 |
+
values = {}
|
| 77 |
+
for col, val in row.items():
|
| 78 |
+
if re.match(r"20\d{2}", str(col)):
|
| 79 |
+
clean_val = str(val).replace(",", "").strip()
|
| 80 |
+
if clean_val and clean_val not in ["-", "—", "nan"]:
|
| 81 |
+
values[str(col)] = clean_val
|
| 82 |
+
|
| 83 |
+
if not values:
|
| 84 |
+
continue
|
| 85 |
+
|
| 86 |
+
table_rows.append({
|
| 87 |
+
"id": f"table-{row_id}",
|
| 88 |
+
"metric": metric,
|
| 89 |
+
"years": list(values.keys()),
|
| 90 |
+
"values": values,
|
| 91 |
+
"content": f"{metric} values: {json.dumps(values)}",
|
| 92 |
+
"source": "table"
|
| 93 |
+
})
|
| 94 |
+
row_id += 1
|
| 95 |
+
|
| 96 |
+
print(f"Extracted {len(table_rows)} rows from PDF tables")
|
| 97 |
+
return table_rows
|
| 98 |
+
|
| 99 |
+
def build_dense_faiss(texts: List[str], out_path: str):
|
| 100 |
+
print(f"Embedding {len(texts)} docs with {EMBED_MODEL} ...")
|
| 101 |
+
model = SentenceTransformer(EMBED_MODEL)
|
| 102 |
+
emb = model.encode(texts, convert_to_numpy=True, batch_size=64, show_progress_bar=True)
|
| 103 |
+
faiss.normalize_L2(emb)
|
| 104 |
+
dim = emb.shape[1]
|
| 105 |
+
|
| 106 |
+
index = faiss.IndexFlatIP(dim)
|
| 107 |
+
index.add(emb)
|
| 108 |
+
faiss.write_index(index, out_path)
|
| 109 |
+
print(f"FAISS index built & saved -> {out_path}")
|
| 110 |
+
|
| 111 |
+
def build_bm25(texts: List[str], out_path: str):
|
| 112 |
+
tokenized = [simple_tokenize(t) for t in texts]
|
| 113 |
+
bm25 = BM25Okapi(tokenized)
|
| 114 |
+
with open(out_path, "wb") as f:
|
| 115 |
+
pickle.dump({"bm25": bm25, "tokenized_corpus": tokenized}, f)
|
| 116 |
+
print(f"BM25 index built & saved -> {out_path}")
|
| 117 |
+
|
| 118 |
+
# ---------------- Main ----------------
|
| 119 |
+
def main():
|
| 120 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
| 121 |
+
|
| 122 |
+
# 1) Extract table rows
|
| 123 |
+
docs = extract_tables_from_pdf(PDF_PATH, pages="all")
|
| 124 |
+
all_texts = [d["content"] for d in docs]
|
| 125 |
+
|
| 126 |
+
# 2) Create chunks of size 100 and 400
|
| 127 |
+
chunks_100 = create_chunks(all_texts, 100)
|
| 128 |
+
chunks_400 = create_chunks(all_texts, 400)
|
| 129 |
+
|
| 130 |
+
# 3) Save them separately
|
| 131 |
+
with open(CHUNKS_100_PATH, "w", encoding="utf-8") as f:
|
| 132 |
+
json.dump(chunks_100, f, indent=2, ensure_ascii=False)
|
| 133 |
+
with open(CHUNKS_400_PATH, "w", encoding="utf-8") as f:
|
| 134 |
+
json.dump(chunks_400, f, indent=2, ensure_ascii=False)
|
| 135 |
+
print(f"Saved {len(chunks_100)} chunks_100 -> {CHUNKS_100_PATH}")
|
| 136 |
+
print(f"Saved {len(chunks_400)} chunks_400 -> {CHUNKS_400_PATH}")
|
| 137 |
+
|
| 138 |
+
# 4) Merge with metadata
|
| 139 |
+
merged = []
|
| 140 |
+
for i, ch in enumerate(chunks_100):
|
| 141 |
+
merged.append({"id": f"100-{i}", "chunk_size": 100, "content": ch})
|
| 142 |
+
for i, ch in enumerate(chunks_400):
|
| 143 |
+
merged.append({"id": f"400-{i}", "chunk_size": 400, "content": ch})
|
| 144 |
+
|
| 145 |
+
# 5) Save merged chunks
|
| 146 |
+
with open(CHUNKS_MERGED_PATH, "w", encoding="utf-8") as f:
|
| 147 |
+
json.dump(merged, f, indent=2, ensure_ascii=False)
|
| 148 |
+
print(f"Saved {len(merged)} merged chunks -> {CHUNKS_MERGED_PATH}")
|
| 149 |
+
|
| 150 |
+
# 6) Build FAISS & BM25 on merged chunks
|
| 151 |
+
texts = [m["content"] for m in merged]
|
| 152 |
+
build_dense_faiss(texts, FAISS_PATH)
|
| 153 |
+
build_bm25(texts, BM25_PATH)
|
| 154 |
+
|
| 155 |
+
# 7) Save metadata
|
| 156 |
+
with open(META_PATH, "wb") as f:
|
| 157 |
+
pickle.dump(merged, f)
|
| 158 |
+
print(f"Saved metadata -> {META_PATH}")
|
| 159 |
+
|
| 160 |
+
print("\n✅ Done. Created 100 + 400 chunks separately and merged them for unified FAISS & BM25 indexes!")
|
| 161 |
+
|
| 162 |
+
if __name__ == "__main__":
|
| 163 |
+
main()
|