File size: 5,250 Bytes
d0e04e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import requests
from datetime import datetime
import pandas as pd
import joblib



def predict_sby():
    api = 'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Surabaya,ID/today?unitGroup=metric&include=hours&key=AQCL3EG5SNW9XDN44A67J95UB'

    response = requests.get(api)

    if response.status_code == 200:
        weather_data = response.json()
    else:
        print(f"Error: {response.status_code}")
        print(response.text)    

    
    rounded_current_hour = datetime.now().replace(minute=0, second=0, microsecond=0).strftime('%H:%M:%S')  # Misal: '01:00:00'

    print(f"Rounded current hour: {rounded_current_hour}")
    selected_hour = next((hour for hour in weather_data['days'][0]['hours'] if hour['datetime'] == rounded_current_hour), None)

    sby_weather = pd.DataFrame(selected_hour, index=[0])
    df_tes = sby_weather.copy()
    df_tes.drop(columns=['snowdepth', 'snow', 'preciptype', 'precipprob', 'precip', 'datetime', 'icon', 'stations', 'source', 'datetime', 'datetimeEpoch', 'solarradiation', 'solarenergy', 'uvindex' , 'severerisk', 'pressure'], inplace=True)
    label_mapping = {
        'Partially cloudy': 'Cloudy',
        'Rain, Partially cloudy': 'Rain',
        'Overcast': 'Cloudy',
        'Rain, Overcast': 'Rain',
        'Clear': 'Clear',
        'Rain': 'Rain'
    }
    # Mengganti label pada kolom 'conditions'
    df_tes['conditions'] = df_tes['conditions'].map(label_mapping)

    label_encoder = joblib.load('data/predict/label_encoder.pkl')
    model = joblib.load('data/predict/model_rf.pkl')
    df_tes['conditions'] = label_encoder.transform(df_tes['conditions'])

    df_tes = df_tes[['temp', 'feelslike', 'dew', 'humidity', 'windgust', 'windspeed',
    'winddir', 'cloudcover', 'visibility']]
    
    predicted_class_origin = model.predict(df_tes)

    predicted_class_decode = label_encoder.inverse_transform(predicted_class_origin.reshape(-1))

    if predicted_class_decode[0] == 'Cloudy':
        pred_logo = 'static/sun-cloudy.png'
        pred_color = '#BCCCDC'
        pred_rgb = 'rgba(188, 204, 220, 0.2)'
        pred_icon = 'fa-solid fa-cloud'
    elif predicted_class_decode[0] == 'Clear':
        pred_logo = 'static/sun.png'
        pred_color = '#B1F0F7'
        pred_rgb = 'rgba(177, 240, 247, 0.2)'
        pred_icon = 'fa-solid fa-sun'
    elif predicted_class_decode[0] == 'Rain':
        pred_logo = 'static/rain.png'
        pred_color = '#63839c'
        pred_rgb = 'rgba(99, 131, 156, 0.2)'
        pred_icon = 'fa-solid fa-cloud-showers-heavy'


    return predicted_class_decode[0], pred_logo, pred_color, pred_rgb, df_tes, pred_icon


def predict_bangkalan():
    api = 'https://weather.visualcrossing.com/VisualCrossingWebServices/rest/services/timeline/Bangkalan,ID/today?unitGroup=metric&include=hours&key=AQCL3EG5SNW9XDN44A67J95UB'

    response = requests.get(api)

    if response.status_code == 200:
        weather_data = response.json()
    else:
        print(f"Error: {response.status_code}")
        print(response.text)    

    
    rounded_current_hour = datetime.now().replace(minute=0, second=0, microsecond=0).strftime('%H:%M:%S')  # Misal: '01:00:00'

    print(f"Rounded current hour: {rounded_current_hour}")
    selected_hour = next((hour for hour in weather_data['days'][0]['hours'] if hour['datetime'] == rounded_current_hour), None)

    sby_weather = pd.DataFrame(selected_hour, index=[0])
    df_tes = sby_weather.copy()
    df_tes.drop(columns=['snowdepth', 'snow', 'preciptype', 'precipprob', 'precip', 'datetime', 'icon', 'stations', 'source', 'datetime', 'datetimeEpoch', 'solarradiation', 'solarenergy', 'uvindex' , 'severerisk', 'pressure'], inplace=True)
    label_mapping = {
        'Partially cloudy': 'Cloudy',
        'Rain, Partially cloudy': 'Rain',
        'Overcast': 'Cloudy',
        'Rain, Overcast': 'Rain',
        'Clear': 'Clear',
        'Rain': 'Rain'
    }
    # Mengganti label pada kolom 'conditions'
    df_tes['conditions'] = df_tes['conditions'].map(label_mapping)

    label_encoder = joblib.load('data/predict/label_encoder_bgkln.pkl')
    model = joblib.load('data/predict/model_rf_bgkln.pkl')
    df_tes['conditions'] = label_encoder.transform(df_tes['conditions'])

    df_tes = df_tes[['temp', 'feelslike', 'dew', 'humidity', 'windgust', 'windspeed',
    'winddir', 'cloudcover', 'visibility']]
    
    predicted_class_origin = model.predict(df_tes)

    predicted_class_decode = label_encoder.inverse_transform(predicted_class_origin.reshape(-1))

    if predicted_class_decode[0] == 'Cloudy':
        pred_logo = 'static/sun-cloudy.png'
        pred_color = '#BCCCDC'
        pred_rgb = 'rgba(188, 204, 220, 0.2)'
        pred_icon = 'fa-solid fa-cloud'
    elif predicted_class_decode[0] == 'Clear':
        pred_logo = 'static/sun.png'
        pred_color = '#B1F0F7'
        pred_rgb = 'rgba(177, 240, 247, 0.2)'
        pred_icon = 'fa-solid fa-sun'
    elif predicted_class_decode[0] == 'Rain':
        pred_logo = 'static/rain.png'
        pred_color = '#63839c'
        pred_rgb = 'rgba(99, 131, 156, 0.2)'
        pred_icon = 'fa-solid fa-cloud-showers-heavy'


    return predicted_class_decode[0], pred_logo, pred_color, pred_rgb, df_tes, pred_icon