Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- app.py +143 -0
- face_detection_yunet_2023mar.onnx +3 -0
- face_detection_yunet_2023mar_int8.onnx +3 -0
- requirements.txt +3 -0
- yunet.py +55 -0
app.py
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import cv2
|
| 3 |
+
import cv2 as cv
|
| 4 |
+
import numpy as np
|
| 5 |
+
import gradio as gr
|
| 6 |
+
from yunet import YuNet
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# Valid combinations of backends and targets
|
| 10 |
+
backend_target_pairs = [
|
| 11 |
+
[cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_TARGET_CPU],
|
| 12 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA],
|
| 13 |
+
[cv.dnn.DNN_BACKEND_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16],
|
| 14 |
+
[cv.dnn.DNN_BACKEND_TIMVX, cv.dnn.DNN_TARGET_NPU],
|
| 15 |
+
[cv.dnn.DNN_BACKEND_CANN, cv.dnn.DNN_TARGET_NPU],
|
| 16 |
+
]
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class ImageResizer:
|
| 20 |
+
def __init__(
|
| 21 |
+
self,
|
| 22 |
+
modelPath,
|
| 23 |
+
input_size=(320, 320),
|
| 24 |
+
conf_threshold=0.6,
|
| 25 |
+
nms_threshold=0.3,
|
| 26 |
+
top_k=5000,
|
| 27 |
+
backend_id=0,
|
| 28 |
+
target_id=0,
|
| 29 |
+
):
|
| 30 |
+
self.model = YuNet(
|
| 31 |
+
modelPath=modelPath,
|
| 32 |
+
inputSize=input_size,
|
| 33 |
+
confThreshold=conf_threshold,
|
| 34 |
+
nmsThreshold=nms_threshold,
|
| 35 |
+
topK=top_k,
|
| 36 |
+
backendId=backend_id,
|
| 37 |
+
targetId=target_id,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def detect(self, image, num_faces=None):
|
| 41 |
+
# If input is an image
|
| 42 |
+
if image is not None:
|
| 43 |
+
h, w, _ = image.shape
|
| 44 |
+
|
| 45 |
+
# Inference
|
| 46 |
+
self.model.setInputSize([w, h])
|
| 47 |
+
results = self.model.infer(image)
|
| 48 |
+
|
| 49 |
+
faces = results[:num_faces] if num_faces else results
|
| 50 |
+
|
| 51 |
+
bboxs = []
|
| 52 |
+
|
| 53 |
+
for face in faces:
|
| 54 |
+
bbox = face[0:4].astype(np.int32) # x,y,w,h
|
| 55 |
+
x, y, w, h = bbox
|
| 56 |
+
# draw
|
| 57 |
+
cv2.rectangle(image, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
| 58 |
+
bboxs.append(bbox)
|
| 59 |
+
|
| 60 |
+
return image, bboxs
|
| 61 |
+
|
| 62 |
+
def resize(self, image, target_size=512, above_head_ratio=0.5):
|
| 63 |
+
height, width, _c = image.shape
|
| 64 |
+
ar = width / height
|
| 65 |
+
# downscale the image
|
| 66 |
+
if not target_size:
|
| 67 |
+
target_size = 512
|
| 68 |
+
if ar > 1:
|
| 69 |
+
# Landscape
|
| 70 |
+
new_height = target_size
|
| 71 |
+
new_width = int(target_size * ar)
|
| 72 |
+
elif ar < 1:
|
| 73 |
+
# Portrait
|
| 74 |
+
new_width = target_size
|
| 75 |
+
new_height = int(target_size / ar)
|
| 76 |
+
else:
|
| 77 |
+
# Square
|
| 78 |
+
new_width = target_size
|
| 79 |
+
new_height = target_size
|
| 80 |
+
|
| 81 |
+
resized = cv2.resize(
|
| 82 |
+
image, (new_width, new_height), interpolation=cv2.INTER_LINEAR
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Perform object detection on the resized image
|
| 86 |
+
dt_image, bboxes = self.detect(resized.copy())
|
| 87 |
+
|
| 88 |
+
# crop around face
|
| 89 |
+
if len(bboxes) >= 1:
|
| 90 |
+
x, y, w, h = bboxes[0]
|
| 91 |
+
else:
|
| 92 |
+
x, y, w, h = 0, 0, target_size, target_size
|
| 93 |
+
# 20% of image height
|
| 94 |
+
above_head_max = int(target_size * above_head_ratio)
|
| 95 |
+
x_center = int((x + (x + w)) / 2)
|
| 96 |
+
y_center = int((y + (y + h)) / 2)
|
| 97 |
+
# Calculate cropping box
|
| 98 |
+
left = int(max(0, x_center - target_size // 2))
|
| 99 |
+
top = int(max(0, y_center - above_head_max))
|
| 100 |
+
right = min(left + target_size, resized.shape[1])
|
| 101 |
+
bottom = min(top + target_size, resized.shape[0])
|
| 102 |
+
|
| 103 |
+
cropped_image = resized[top:bottom, left:right]
|
| 104 |
+
return dt_image, cropped_image
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
model_path = "face_detection_yunet_2023mar.onnx"
|
| 108 |
+
image_resizer = ImageResizer(modelPath=model_path)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def face_detector(input_image, target_size=512):
|
| 112 |
+
return image_resizer.resize(input_image, target_size)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
inputs = [
|
| 116 |
+
gr.Image(sources=["upload", "clipboard"], type="numpy"),
|
| 117 |
+
gr.Dropdown(
|
| 118 |
+
choices=[512, 768, 1024],
|
| 119 |
+
value=512,
|
| 120 |
+
allow_custom_value=True,
|
| 121 |
+
info="Target size of images",
|
| 122 |
+
),
|
| 123 |
+
]
|
| 124 |
+
outputs = [
|
| 125 |
+
gr.Image(label="face detection", format="JPEG"),
|
| 126 |
+
gr.Image(label="focused resized", format="JPEG"),
|
| 127 |
+
]
|
| 128 |
+
demo = gr.Interface(
|
| 129 |
+
fn=face_detector,
|
| 130 |
+
inputs=inputs,
|
| 131 |
+
outputs=outputs,
|
| 132 |
+
title="Image Resizer",
|
| 133 |
+
theme="gradio/monochrome",
|
| 134 |
+
api_name="resize",
|
| 135 |
+
submit_btn=gr.Button("Resize", variant="primary"),
|
| 136 |
+
allow_flagging="never",
|
| 137 |
+
)
|
| 138 |
+
demo.queue(
|
| 139 |
+
max_size=10,
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
if __name__ == "__main__":
|
| 143 |
+
demo.launch()
|
face_detection_yunet_2023mar.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f2383e4dd3cfbb4553ea8718107fc0423210dc964f9f4280604804ed2552fa4
|
| 3 |
+
size 232589
|
face_detection_yunet_2023mar_int8.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:321aa5a6afabf7ecc46a3d06bfab2b579dc96eb5c3be7edd365fa04502ad9294
|
| 3 |
+
size 100416
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
opencv-python >= 4.9.0
|
| 2 |
+
gradio
|
| 3 |
+
numpy
|
yunet.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# This file is part of OpenCV Zoo project.
|
| 2 |
+
# It is subject to the license terms in the LICENSE file found in the same directory.
|
| 3 |
+
#
|
| 4 |
+
# Copyright (C) 2021, Shenzhen Institute of Artificial Intelligence and Robotics for Society, all rights reserved.
|
| 5 |
+
# Third party copyrights are property of their respective owners.
|
| 6 |
+
|
| 7 |
+
from itertools import product
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import cv2 as cv
|
| 11 |
+
|
| 12 |
+
class YuNet:
|
| 13 |
+
def __init__(self, modelPath, inputSize=[320, 320], confThreshold=0.6, nmsThreshold=0.3, topK=5000, backendId=0, targetId=0):
|
| 14 |
+
self._modelPath = modelPath
|
| 15 |
+
self._inputSize = tuple(inputSize) # [w, h]
|
| 16 |
+
self._confThreshold = confThreshold
|
| 17 |
+
self._nmsThreshold = nmsThreshold
|
| 18 |
+
self._topK = topK
|
| 19 |
+
self._backendId = backendId
|
| 20 |
+
self._targetId = targetId
|
| 21 |
+
|
| 22 |
+
self._model = cv.FaceDetectorYN.create(
|
| 23 |
+
model=self._modelPath,
|
| 24 |
+
config="",
|
| 25 |
+
input_size=self._inputSize,
|
| 26 |
+
score_threshold=self._confThreshold,
|
| 27 |
+
nms_threshold=self._nmsThreshold,
|
| 28 |
+
top_k=self._topK,
|
| 29 |
+
backend_id=self._backendId,
|
| 30 |
+
target_id=self._targetId)
|
| 31 |
+
|
| 32 |
+
@property
|
| 33 |
+
def name(self):
|
| 34 |
+
return self.__class__.__name__
|
| 35 |
+
|
| 36 |
+
def setBackendAndTarget(self, backendId, targetId):
|
| 37 |
+
self._backendId = backendId
|
| 38 |
+
self._targetId = targetId
|
| 39 |
+
self._model = cv.FaceDetectorYN.create(
|
| 40 |
+
model=self._modelPath,
|
| 41 |
+
config="",
|
| 42 |
+
input_size=self._inputSize,
|
| 43 |
+
score_threshold=self._confThreshold,
|
| 44 |
+
nms_threshold=self._nmsThreshold,
|
| 45 |
+
top_k=self._topK,
|
| 46 |
+
backend_id=self._backendId,
|
| 47 |
+
target_id=self._targetId)
|
| 48 |
+
|
| 49 |
+
def setInputSize(self, input_size):
|
| 50 |
+
self._model.setInputSize(tuple(input_size))
|
| 51 |
+
|
| 52 |
+
def infer(self, image):
|
| 53 |
+
# Forward
|
| 54 |
+
faces = self._model.detect(image)
|
| 55 |
+
return np.array([]) if faces[1] is None else faces[1]
|