File size: 5,835 Bytes
1620846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple
from model.attention import MultiHeadAttention

class FeedForward(nn.Module):
    """Position-wise feed-forward network"""
    
    def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1):
        super().__init__()
        self.linear1 = nn.Linear(d_model, d_ff)
        self.linear2 = nn.Linear(d_ff, d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = nn.ReLU()
        
        # Layer normalization
        self.layer_norm = nn.LayerNorm(d_model)
        
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Args:
            x: Input tensor [batch_size, seq_len, d_model]
        
        Returns:
            Output tensor [batch_size, seq_len, d_model]
        """
        # Store residual
        residual = x
        
        # Feed-forward network
        x = self.linear1(x)
        x = self.activation(x)
        x = self.dropout(x)
        x = self.linear2(x)
        x = self.dropout(x)
        
        # Add and normalize
        x = self.layer_norm(x + residual)
        
        return x


class EncoderLayer(nn.Module):
    """Single encoder layer"""
    
    def __init__(self, d_model: int, n_heads: int, d_ff: int, dropout: float = 0.1):
        super().__init__()
        
        # Multi-head attention
        self.self_attention = MultiHeadAttention(d_model, n_heads, dropout)
        
        # Feed-forward network
        self.feed_forward = FeedForward(d_model, d_ff, dropout)
        
    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Args:
            x: Input tensor [batch_size, seq_len, d_model]
            mask: Attention mask
        
        Returns:
            Output tensor [batch_size, seq_len, d_model]
        """
        # Self-attention
        x, _ = self.self_attention(x, x, x, mask)
        
        # Feed-forward
        x = self.feed_forward(x)
        
        return x


class DecoderLayer(nn.Module):
    """Single decoder layer"""
    
    def __init__(self, d_model: int, n_heads: int, d_ff: int, dropout: float = 0.1):
        super().__init__()
        
        # Masked self-attention
        self.self_attention = MultiHeadAttention(d_model, n_heads, dropout)
        
        # Cross-attention
        self.cross_attention = MultiHeadAttention(d_model, n_heads, dropout)
        
        # Feed-forward network
        self.feed_forward = FeedForward(d_model, d_ff, dropout)
        
    def forward(self, x: torch.Tensor, memory: torch.Tensor,
                tgt_mask: Optional[torch.Tensor] = None,
                memory_mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        Args:
            x: Input tensor [batch_size, tgt_len, d_model]
            memory: Encoder output [batch_size, src_len, d_model]
            tgt_mask: Target attention mask
            memory_mask: Memory attention mask
        
        Returns:
            output: Output tensor [batch_size, tgt_len, d_model]
            self_attn: Self-attention weights
            cross_attn: Cross-attention weights
        """
        # Masked self-attention
        x, self_attn = self.self_attention(x, x, x, tgt_mask)
        
        # Cross-attention
        x, cross_attn = self.cross_attention(x, memory, memory, memory_mask)
        
        # Feed-forward
        x = self.feed_forward(x)
        
        return x, self_attn, cross_attn


class Encoder(nn.Module):
    """Transformer encoder"""
    
    def __init__(self, n_layers: int, d_model: int, n_heads: int, 
                 d_ff: int, dropout: float = 0.1):
        super().__init__()
        
        # Stack of encoder layers
        self.layers = nn.ModuleList([
            EncoderLayer(d_model, n_heads, d_ff, dropout)
            for _ in range(n_layers)
        ])
        
        # Final layer normalization
        self.layer_norm = nn.LayerNorm(d_model)
        
    def forward(self, x: torch.Tensor, mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Args:
            x: Input tensor [batch_size, seq_len, d_model]
            mask: Attention mask
        
        Returns:
            Output tensor [batch_size, seq_len, d_model]
        """
        # Pass through encoder layers
        for layer in self.layers:
            x = layer(x, mask)
        
        # Final layer normalization
        x = self.layer_norm(x)
        
        return x


class Decoder(nn.Module):
    """Transformer decoder"""
    
    def __init__(self, n_layers: int, d_model: int, n_heads: int,
                 d_ff: int, dropout: float = 0.1):
        super().__init__()
        
        # Stack of decoder layers
        self.layers = nn.ModuleList([
            DecoderLayer(d_model, n_heads, d_ff, dropout)
            for _ in range(n_layers)
        ])
        
        # Final layer normalization
        self.layer_norm = nn.LayerNorm(d_model)
        
    def forward(self, x: torch.Tensor, memory: torch.Tensor,
                tgt_mask: Optional[torch.Tensor] = None,
                memory_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
        """
        Args:
            x: Input tensor [batch_size, tgt_len, d_model]
            memory: Encoder output [batch_size, src_len, d_model]
            tgt_mask: Target attention mask
            memory_mask: Memory attention mask
        
        Returns:
            Output tensor [batch_size, tgt_len, d_model]
        """
        # Pass through decoder layers
        for layer in self.layers:
            x, _, _ = layer(x, memory, tgt_mask, memory_mask)
        
        # Final layer normalization
        x = self.layer_norm(x)
        
        return x