File size: 5,293 Bytes
1620846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python3
"""
TransLingo Training Script for Google Colab
This script is designed to be copied and run in Google Colab cells
"""

# ============================================
# CELL 1: Check GPU and Setup
# ============================================
import torch
print(f"PyTorch version: {torch.__version__}")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
    print(f"GPU: {torch.cuda.get_device_name(0)}")
    print(f"Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")

# ============================================
# CELL 2: Mount Google Drive (Optional)
# ============================================
# from google.colab import drive
# drive.mount('/content/drive')
# DRIVE_PATH = '/content/drive/MyDrive/translingo_checkpoints'
# import os
# os.makedirs(DRIVE_PATH, exist_ok=True)

# ============================================
# CELL 3: Clone Repository
# ============================================
# !git clone https://github.com/YOUR_USERNAME/translingo.git
# %cd translingo
# !pip install -r requirements.txt

# ============================================
# CELL 4: Main Training Script
# ============================================
import os
import sys
import yaml
import logging
from tqdm import tqdm

# Add project root to path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))

from data.download import DataDownloader
from data.preprocessing import create_dataloaders
from training.train import Trainer

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def main():
    """Main training function for Colab"""
    
    # 1. Download and prepare data
    logger.info("Downloading Multi30k dataset...")
    downloader = DataDownloader()
    train_data, valid_data, test_data = downloader.download_multi30k()
    
    if not train_data:
        logger.error("Failed to download data!")
        return
    
    logger.info(f"Train samples: {len(train_data)}")
    logger.info(f"Valid samples: {len(valid_data)}")
    logger.info(f"Test samples: {len(test_data)}")
    
    # 2. Train tokenizer
    logger.info("Training tokenizer...")
    downloader.prepare_tokenizer(train_data)
    
    # 3. Create trainer
    logger.info("Initializing trainer...")
    trainer = Trainer('configs/config.yaml')
    
    # Optional: Modify config for faster testing
    # trainer.config['training']['num_epochs'] = 5
    # trainer.config['model']['n_layers'] = 2  # Fewer layers for testing
    
    # 4. Create dataloaders
    tokenizer_path = os.path.join('data', 'processed', 'tokenizer.model')
    train_loader, valid_loader, test_loader = create_dataloaders(
        train_data,
        valid_data,
        test_data,
        tokenizer_path,
        batch_size=trainer.config['training']['batch_size'],
        num_workers=2 if torch.cuda.is_available() else 0
    )
    
    logger.info(f"Train batches: {len(train_loader)}")
    logger.info(f"Valid batches: {len(valid_loader)}")
    
    # 5. Train model
    logger.info("Starting training...")
    logger.info(f"Device: {trainer.device}")
    logger.info(f"Epochs: {trainer.config['training']['num_epochs']}")
    logger.info(f"Batch size: {trainer.config['training']['batch_size']}")
    
    trainer.train(train_loader, valid_loader)
    
    # 6. Evaluate on test set
    logger.info("Evaluating on test set...")
    test_metrics = trainer.validate(test_loader)
    logger.info(f"Test Loss: {test_metrics['loss']:.4f}")
    logger.info(f"Test BLEU: {test_metrics['bleu']:.2f}")
    
    # 7. Save to Google Drive if mounted
    if 'DRIVE_PATH' in globals():
        os.system(f"cp -r checkpoints/* {DRIVE_PATH}/")
        os.system(f"cp -r logs/* {DRIVE_PATH}/logs/")
        logger.info(f"Results saved to Google Drive: {DRIVE_PATH}")

if __name__ == "__main__":
    main()

# ============================================
# CELL 5: Quick Translation Test
# ============================================
"""
import sentencepiece as spm

# Load tokenizer
sp = spm.SentencePieceProcessor()
sp.load('data/processed/tokenizer.model')

# Test sentences
test_sentences = [
    "Guten Morgen!",
    "Wie geht es dir?",
    "Das Wetter ist heute schön."
]

# Load best model
checkpoint = torch.load('checkpoints/best.pt', map_location='cuda')
model = create_model(checkpoint['config'])
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
model.to('cuda')

# Translate
with torch.no_grad():
    for sentence in test_sentences:
        tokens = sp.encode(sentence)
        src = torch.tensor([sp.bos_id()] + tokens + [sp.eos_id()]).unsqueeze(0).cuda()
        translation = model.generate(src, max_length=50)
        translated_tokens = translation[0].cpu().numpy().tolist()
        translated_text = sp.decode(translated_tokens)
        print(f"Source: {sentence}")
        print(f"Translation: {translated_text}")
        print()
"""

# ============================================
# CELL 6: Download Results
# ============================================
"""
# Zip and download checkpoints
!zip -r translingo_checkpoints.zip checkpoints/
!zip -r translingo_logs.zip logs/

from google.colab import files
files.download('translingo_checkpoints.zip')
files.download('translingo_logs.zip')
"""