Spaces:
Sleeping
Sleeping
made changes to atteniton and download
Browse files- PROJECT_SUMMARY.md +151 -0
- data/download.py +104 -49
- model/attention.py +110 -27
- requirements.txt +1 -0
PROJECT_SUMMARY.md
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TransLingo Project Summary
|
| 2 |
+
|
| 3 |
+
## ✅ Project Setup Complete!
|
| 4 |
+
|
| 5 |
+
All components of the TransLingo translation system have been successfully implemented and tested.
|
| 6 |
+
|
| 7 |
+
## 📁 Project Structure
|
| 8 |
+
|
| 9 |
+
```
|
| 10 |
+
translingo/
|
| 11 |
+
├── data/ # Data processing pipeline
|
| 12 |
+
│ ├── download.py # Multi30k dataset downloader
|
| 13 |
+
│ └── preprocessing.py # Dataset and dataloader utilities
|
| 14 |
+
├── model/ # Transformer implementation
|
| 15 |
+
│ ├── transformer.py # Main model class
|
| 16 |
+
│ ├── attention.py # Multi-head attention
|
| 17 |
+
│ ├── embeddings.py # Positional encoding
|
| 18 |
+
│ └── layers.py # Encoder/decoder layers
|
| 19 |
+
├── training/ # Training components
|
| 20 |
+
│ ├── train.py # Main training script with CUDA support
|
| 21 |
+
│ ├── loss.py # Label smoothing loss
|
| 22 |
+
│ └── optimizer.py # Noam learning rate scheduler
|
| 23 |
+
├── inference/ # Inference modules
|
| 24 |
+
│ ├── beam_search.py # Beam search decoder
|
| 25 |
+
│ └── translate.py # Translation interface
|
| 26 |
+
├── frontend/ # User interfaces
|
| 27 |
+
│ └── gradio_app.py # Gradio web interface
|
| 28 |
+
├── notebooks/ # Training notebooks
|
| 29 |
+
│ └── colab_training.py # Google Colab training script
|
| 30 |
+
└── configs/ # Configuration
|
| 31 |
+
└── config.yaml # Model and training configs
|
| 32 |
+
```
|
| 33 |
+
|
| 34 |
+
## 🚀 Next Steps
|
| 35 |
+
|
| 36 |
+
### 1. Push to GitHub
|
| 37 |
+
```bash
|
| 38 |
+
# Add your GitHub repository as remote
|
| 39 |
+
git remote add origin https://github.com/YOUR_USERNAME/translingo.git
|
| 40 |
+
|
| 41 |
+
# Push the code
|
| 42 |
+
git push -u origin main
|
| 43 |
+
```
|
| 44 |
+
|
| 45 |
+
### 2. Train on Google Colab
|
| 46 |
+
1. Go to [Google Colab](https://colab.research.google.com/)
|
| 47 |
+
2. Create a new notebook
|
| 48 |
+
3. Copy the contents from `notebooks/colab_training.py`
|
| 49 |
+
4. Follow these steps in the notebook:
|
| 50 |
+
- Mount Google Drive (optional, for saving checkpoints)
|
| 51 |
+
- Clone your GitHub repository
|
| 52 |
+
- Install dependencies
|
| 53 |
+
- Run the training script
|
| 54 |
+
5. The training will use GPU acceleration automatically
|
| 55 |
+
|
| 56 |
+
### 3. Download Trained Model
|
| 57 |
+
After training completes:
|
| 58 |
+
1. Download the checkpoint files from Colab
|
| 59 |
+
2. Place them in your local `checkpoints/` directory
|
| 60 |
+
3. The files you need:
|
| 61 |
+
- `best.pt` or `latest.pt` (model checkpoint)
|
| 62 |
+
- `data/processed/tokenizer.model` (tokenizer)
|
| 63 |
+
|
| 64 |
+
### 4. Run Gradio Demo
|
| 65 |
+
```bash
|
| 66 |
+
# Activate virtual environment
|
| 67 |
+
source venv/bin/activate
|
| 68 |
+
|
| 69 |
+
# Run the demo
|
| 70 |
+
python frontend/gradio_app.py
|
| 71 |
+
|
| 72 |
+
# Or run without public URL
|
| 73 |
+
python frontend/gradio_app.py --no-share
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
## 📊 Model Configuration
|
| 77 |
+
|
| 78 |
+
- **Architecture**: 3-layer Transformer (optimized for faster training)
|
| 79 |
+
- **Model dimension**: 256
|
| 80 |
+
- **Attention heads**: 4
|
| 81 |
+
- **Feed-forward dimension**: 1024
|
| 82 |
+
- **Vocabulary size**: 10,000 (shared BPE)
|
| 83 |
+
- **Expected BLEU score**: 18-22 (with full training)
|
| 84 |
+
|
| 85 |
+
## 🔧 Customization Options
|
| 86 |
+
|
| 87 |
+
### For Faster Testing
|
| 88 |
+
Edit `configs/config.yaml`:
|
| 89 |
+
```yaml
|
| 90 |
+
model:
|
| 91 |
+
n_layers: 2 # Reduce layers
|
| 92 |
+
training:
|
| 93 |
+
num_epochs: 5 # Fewer epochs
|
| 94 |
+
batch_size: 16 # Smaller batches if memory limited
|
| 95 |
+
```
|
| 96 |
+
|
| 97 |
+
### For Better Quality
|
| 98 |
+
```yaml
|
| 99 |
+
model:
|
| 100 |
+
n_layers: 6 # More layers
|
| 101 |
+
d_model: 512 # Larger model
|
| 102 |
+
training:
|
| 103 |
+
num_epochs: 50 # More training
|
| 104 |
+
vocab_size: 20000 # Larger vocabulary
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
## 🐛 Troubleshooting
|
| 108 |
+
|
| 109 |
+
### CUDA/GPU Issues
|
| 110 |
+
- Ensure you're using GPU runtime in Colab (Runtime → Change runtime type → GPU)
|
| 111 |
+
- Check GPU availability with `torch.cuda.is_available()`
|
| 112 |
+
|
| 113 |
+
### Memory Issues
|
| 114 |
+
- Reduce batch size in `configs/config.yaml`
|
| 115 |
+
- Enable gradient accumulation (already configured)
|
| 116 |
+
- Clear GPU cache periodically (automatic in training script)
|
| 117 |
+
|
| 118 |
+
### Import Errors
|
| 119 |
+
- The torchtext warning on macOS is normal and handled
|
| 120 |
+
- All other imports should work correctly
|
| 121 |
+
|
| 122 |
+
## 📝 Additional Features
|
| 123 |
+
|
| 124 |
+
### While Model is Training
|
| 125 |
+
You can work on these components locally:
|
| 126 |
+
- FastAPI backend (`api/` directory)
|
| 127 |
+
- React frontend (`frontend/web/` directory)
|
| 128 |
+
- Docker deployment (`deployment/` directory)
|
| 129 |
+
- Additional visualization tools
|
| 130 |
+
|
| 131 |
+
### Testing Translation
|
| 132 |
+
Once you have a trained model:
|
| 133 |
+
```python
|
| 134 |
+
# Interactive translation
|
| 135 |
+
python inference/translate.py checkpoints/best.pt data/processed/tokenizer.model
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
## 🎯 Success Metrics
|
| 139 |
+
|
| 140 |
+
- **Training Loss**: Should decrease below 2.0
|
| 141 |
+
- **Validation BLEU**: Target 18-22 for this configuration
|
| 142 |
+
- **Inference Speed**: < 500ms per sentence on GPU
|
| 143 |
+
|
| 144 |
+
## 📧 Support
|
| 145 |
+
|
| 146 |
+
If you encounter any issues:
|
| 147 |
+
1. Check the test script: `python test_setup.py`
|
| 148 |
+
2. Review the logs in `logs/` directory
|
| 149 |
+
3. Ensure all dependencies are installed correctly
|
| 150 |
+
|
| 151 |
+
Good luck with your translation system! 🌍🔤
|
data/download.py
CHANGED
|
@@ -1,22 +1,27 @@
|
|
| 1 |
import os
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
try:
|
| 4 |
from torchtext.datasets import Multi30k
|
| 5 |
from torchtext.data.utils import get_tokenizer
|
| 6 |
from torchtext.vocab import build_vocab_from_iterator
|
| 7 |
TORCHTEXT_AVAILABLE = True
|
| 8 |
except Exception as e:
|
| 9 |
-
print(f"Warning: torchtext import failed: {e}")
|
| 10 |
-
print("Will use manual download method")
|
| 11 |
TORCHTEXT_AVAILABLE = False
|
| 12 |
-
import
|
| 13 |
-
from typing import List, Tuple, Optional, Dict
|
| 14 |
-
import yaml
|
| 15 |
-
import logging
|
| 16 |
-
from tqdm import tqdm
|
| 17 |
-
import urllib.request
|
| 18 |
-
import tarfile
|
| 19 |
-
import zipfile
|
| 20 |
|
| 21 |
logging.basicConfig(level=logging.INFO)
|
| 22 |
logger = logging.getLogger(__name__)
|
|
@@ -32,37 +37,68 @@ class DataDownloader:
|
|
| 32 |
os.makedirs(os.path.join(self.data_dir, 'processed'), exist_ok=True)
|
| 33 |
|
| 34 |
def download_multi30k(self) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
|
| 35 |
-
"""Download Multi30k dataset"""
|
| 36 |
logger.info("Downloading Multi30k dataset...")
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
train_data = list(Multi30k(split='train', language_pair=('de', 'en')))
|
| 42 |
valid_data = list(Multi30k(split='valid', language_pair=('de', 'en')))
|
| 43 |
test_data = list(Multi30k(split='test', language_pair=('de', 'en')))
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
def _download_multi30k_manual(self) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
|
| 64 |
-
"""Manual download of Multi30k dataset"""
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
files_to_download = {
|
| 68 |
'train.de': 'train.de',
|
|
@@ -73,17 +109,28 @@ class DataDownloader:
|
|
| 73 |
'test_2016_flickr.en': 'test.en'
|
| 74 |
}
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
# Load data from files
|
| 89 |
train_data = self._load_parallel_data('train')
|
|
@@ -159,12 +206,13 @@ class DataDownloader:
|
|
| 159 |
pad_piece='<pad>',
|
| 160 |
unk_piece='<unk>',
|
| 161 |
bos_piece='<bos>',
|
| 162 |
-
eos_piece='<eos>'
|
|
|
|
| 163 |
)
|
| 164 |
|
| 165 |
# Clean up
|
| 166 |
os.remove(temp_file)
|
| 167 |
-
logger.info(f"SentencePiece model saved to {model_path}")
|
| 168 |
|
| 169 |
def prepare_tokenizer(self, train_data: List[Tuple[str, str]]) -> None:
|
| 170 |
"""Prepare tokenizer from training data"""
|
|
@@ -182,12 +230,19 @@ class DataDownloader:
|
|
| 182 |
self.train_sentencepiece(all_texts, "tokenizer", vocab_size=self.config['model']['vocab_size'])
|
| 183 |
|
| 184 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
downloader = DataDownloader()
|
| 186 |
train_data, valid_data, test_data = downloader.download_multi30k()
|
| 187 |
|
| 188 |
if train_data:
|
| 189 |
# Train tokenizer
|
| 190 |
downloader.prepare_tokenizer(train_data)
|
| 191 |
-
logger.info("Data download and tokenizer training completed!")
|
| 192 |
else:
|
| 193 |
-
logger.error("Failed to download data.")
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
+
import sentencepiece as spm
|
| 4 |
+
from typing import List, Tuple, Optional, Dict
|
| 5 |
+
import yaml
|
| 6 |
+
import logging
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import urllib.request
|
| 9 |
+
|
| 10 |
+
try:
|
| 11 |
+
from datasets import load_dataset
|
| 12 |
+
HUGGINGFACE_AVAILABLE = True
|
| 13 |
+
except ImportError:
|
| 14 |
+
HUGGINGFACE_AVAILABLE = False
|
| 15 |
+
print("Warning: datasets library not available. Install with: pip install datasets")
|
| 16 |
+
|
| 17 |
try:
|
| 18 |
from torchtext.datasets import Multi30k
|
| 19 |
from torchtext.data.utils import get_tokenizer
|
| 20 |
from torchtext.vocab import build_vocab_from_iterator
|
| 21 |
TORCHTEXT_AVAILABLE = True
|
| 22 |
except Exception as e:
|
|
|
|
|
|
|
| 23 |
TORCHTEXT_AVAILABLE = False
|
| 24 |
+
print(f"Warning: torchtext import failed: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
logging.basicConfig(level=logging.INFO)
|
| 27 |
logger = logging.getLogger(__name__)
|
|
|
|
| 37 |
os.makedirs(os.path.join(self.data_dir, 'processed'), exist_ok=True)
|
| 38 |
|
| 39 |
def download_multi30k(self) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
|
| 40 |
+
"""Download Multi30k dataset - tries multiple methods"""
|
| 41 |
logger.info("Downloading Multi30k dataset...")
|
| 42 |
|
| 43 |
+
# Method 1: Try Hugging Face first (most reliable)
|
| 44 |
+
if HUGGINGFACE_AVAILABLE:
|
| 45 |
+
try:
|
| 46 |
+
logger.info("Attempting download from Hugging Face...")
|
| 47 |
+
return self._download_from_huggingface()
|
| 48 |
+
except Exception as e:
|
| 49 |
+
logger.warning(f"Hugging Face download failed: {e}")
|
| 50 |
+
|
| 51 |
+
# Method 2: Try torchtext if available
|
| 52 |
+
if TORCHTEXT_AVAILABLE:
|
| 53 |
+
try:
|
| 54 |
+
logger.info("Attempting download with torchtext...")
|
| 55 |
train_data = list(Multi30k(split='train', language_pair=('de', 'en')))
|
| 56 |
valid_data = list(Multi30k(split='valid', language_pair=('de', 'en')))
|
| 57 |
test_data = list(Multi30k(split='test', language_pair=('de', 'en')))
|
| 58 |
+
|
| 59 |
+
logger.info(f"Train samples: {len(train_data)}")
|
| 60 |
+
logger.info(f"Valid samples: {len(valid_data)}")
|
| 61 |
+
logger.info(f"Test samples: {len(test_data)}")
|
| 62 |
+
|
| 63 |
+
self._save_data_to_files(train_data, valid_data, test_data)
|
| 64 |
+
return train_data, valid_data, test_data
|
| 65 |
+
except Exception as e:
|
| 66 |
+
logger.warning(f"Torchtext download failed: {e}")
|
| 67 |
+
|
| 68 |
+
# Method 3: Try manual download from GitHub
|
| 69 |
+
logger.info("Attempting manual download from GitHub...")
|
| 70 |
+
return self._download_multi30k_manual()
|
| 71 |
+
|
| 72 |
+
def _download_from_huggingface(self) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
|
| 73 |
+
"""Download Multi30k from Hugging Face datasets hub"""
|
| 74 |
+
logger.info("Downloading from Hugging Face datasets hub...")
|
| 75 |
+
|
| 76 |
+
# Load dataset
|
| 77 |
+
dataset = load_dataset("bentrevett/multi30k")
|
| 78 |
+
|
| 79 |
+
# Convert to expected format: List[Tuple[str, str]]
|
| 80 |
+
train_data = [(item['de'], item['en']) for item in dataset['train']]
|
| 81 |
+
valid_data = [(item['de'], item['en']) for item in dataset['validation']]
|
| 82 |
+
test_data = [(item['de'], item['en']) for item in dataset['test']]
|
| 83 |
+
|
| 84 |
+
logger.info(f"✅ Downloaded from Hugging Face:")
|
| 85 |
+
logger.info(f" Train samples: {len(train_data)}")
|
| 86 |
+
logger.info(f" Valid samples: {len(valid_data)}")
|
| 87 |
+
logger.info(f" Test samples: {len(test_data)}")
|
| 88 |
+
|
| 89 |
+
# Save to files for consistency with other methods
|
| 90 |
+
self._save_data_to_files(train_data, valid_data, test_data)
|
| 91 |
+
|
| 92 |
+
return train_data, valid_data, test_data
|
| 93 |
|
| 94 |
def _download_multi30k_manual(self) -> Tuple[List[Tuple[str, str]], List[Tuple[str, str]], List[Tuple[str, str]]]:
|
| 95 |
+
"""Manual download of Multi30k dataset from GitHub"""
|
| 96 |
+
# Try multiple mirror URLs
|
| 97 |
+
base_urls = [
|
| 98 |
+
"https://raw.githubusercontent.com/multi30k/dataset/master/data/task1/raw/",
|
| 99 |
+
"https://github.com/multi30k/dataset/raw/master/data/task1/raw/",
|
| 100 |
+
"https://raw.githubusercontent.com/bentrevett/pytorch-seq2seq/master/assets/data/"
|
| 101 |
+
]
|
| 102 |
|
| 103 |
files_to_download = {
|
| 104 |
'train.de': 'train.de',
|
|
|
|
| 109 |
'test_2016_flickr.en': 'test.en'
|
| 110 |
}
|
| 111 |
|
| 112 |
+
success = False
|
| 113 |
+
for base_url in base_urls:
|
| 114 |
+
try:
|
| 115 |
+
for remote_file, local_file in files_to_download.items():
|
| 116 |
+
url = base_url + remote_file
|
| 117 |
+
output_path = os.path.join(self.data_dir, 'raw', local_file)
|
| 118 |
+
|
| 119 |
+
if not os.path.exists(output_path):
|
| 120 |
+
logger.info(f"Downloading {remote_file} from {base_url}...")
|
| 121 |
+
urllib.request.urlretrieve(url, output_path)
|
| 122 |
+
|
| 123 |
+
success = True
|
| 124 |
+
logger.info(f"✅ Successfully downloaded from {base_url}")
|
| 125 |
+
break
|
| 126 |
+
except Exception as e:
|
| 127 |
+
logger.warning(f"Failed to download from {base_url}: {e}")
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
if not success:
|
| 131 |
+
logger.error("❌ Failed to download from all sources")
|
| 132 |
+
logger.info("Please install datasets library: pip install datasets")
|
| 133 |
+
return [], [], []
|
| 134 |
|
| 135 |
# Load data from files
|
| 136 |
train_data = self._load_parallel_data('train')
|
|
|
|
| 206 |
pad_piece='<pad>',
|
| 207 |
unk_piece='<unk>',
|
| 208 |
bos_piece='<bos>',
|
| 209 |
+
eos_piece='<eos>',
|
| 210 |
+
character_coverage=1.0 # Important for handling all characters
|
| 211 |
)
|
| 212 |
|
| 213 |
# Clean up
|
| 214 |
os.remove(temp_file)
|
| 215 |
+
logger.info(f"✅ SentencePiece model saved to {model_path}")
|
| 216 |
|
| 217 |
def prepare_tokenizer(self, train_data: List[Tuple[str, str]]) -> None:
|
| 218 |
"""Prepare tokenizer from training data"""
|
|
|
|
| 230 |
self.train_sentencepiece(all_texts, "tokenizer", vocab_size=self.config['model']['vocab_size'])
|
| 231 |
|
| 232 |
if __name__ == "__main__":
|
| 233 |
+
# Install datasets if not available
|
| 234 |
+
if not HUGGINGFACE_AVAILABLE:
|
| 235 |
+
import subprocess
|
| 236 |
+
print("Installing datasets library...")
|
| 237 |
+
subprocess.run(["pip", "install", "datasets", "-q"])
|
| 238 |
+
from datasets import load_dataset
|
| 239 |
+
|
| 240 |
downloader = DataDownloader()
|
| 241 |
train_data, valid_data, test_data = downloader.download_multi30k()
|
| 242 |
|
| 243 |
if train_data:
|
| 244 |
# Train tokenizer
|
| 245 |
downloader.prepare_tokenizer(train_data)
|
| 246 |
+
logger.info("✅ Data download and tokenizer training completed!")
|
| 247 |
else:
|
| 248 |
+
logger.error("❌ Failed to download data.")
|
model/attention.py
CHANGED
|
@@ -5,7 +5,7 @@ import math
|
|
| 5 |
from typing import Optional, Tuple
|
| 6 |
|
| 7 |
class ScaledDotProductAttention(nn.Module):
|
| 8 |
-
"""Scaled Dot-Product Attention mechanism"""
|
| 9 |
|
| 10 |
def __init__(self, temperature: float = 1.0, dropout: float = 0.1):
|
| 11 |
super().__init__()
|
|
@@ -25,15 +25,26 @@ class ScaledDotProductAttention(nn.Module):
|
|
| 25 |
output: Attention output [batch_size, n_heads, seq_len, d_k]
|
| 26 |
attention: Attention weights [batch_size, n_heads, seq_len, seq_len]
|
| 27 |
"""
|
| 28 |
-
# Calculate attention scores
|
| 29 |
-
|
|
|
|
| 30 |
|
| 31 |
-
# Apply mask if provided
|
| 32 |
if mask is not None:
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
attention = F.softmax(scores, dim=-1)
|
|
|
|
|
|
|
| 37 |
attention = self.dropout(attention)
|
| 38 |
|
| 39 |
# Apply attention to values
|
|
@@ -43,21 +54,26 @@ class ScaledDotProductAttention(nn.Module):
|
|
| 43 |
|
| 44 |
|
| 45 |
class MultiHeadAttention(nn.Module):
|
| 46 |
-
"""Multi-Head Attention mechanism"""
|
| 47 |
|
| 48 |
-
def __init__(self, d_model: int, n_heads: int, dropout: float = 0.1
|
|
|
|
| 49 |
super().__init__()
|
| 50 |
assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
|
| 51 |
|
| 52 |
self.d_model = d_model
|
| 53 |
self.n_heads = n_heads
|
| 54 |
self.d_k = d_model // n_heads
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
self.
|
| 58 |
-
self.W_k = nn.Linear(d_model, d_model)
|
| 59 |
-
self.W_v = nn.Linear(d_model, d_model)
|
| 60 |
-
self.W_o = nn.Linear(d_model, d_model)
|
| 61 |
|
| 62 |
# Attention
|
| 63 |
self.attention = ScaledDotProductAttention(temperature=1.0, dropout=dropout)
|
|
@@ -66,8 +82,15 @@ class MultiHeadAttention(nn.Module):
|
|
| 66 |
self.dropout = nn.Dropout(dropout)
|
| 67 |
|
| 68 |
# Layer normalization
|
| 69 |
-
self.layer_norm = nn.LayerNorm(d_model)
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor,
|
| 72 |
mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 73 |
"""
|
|
@@ -81,8 +104,13 @@ class MultiHeadAttention(nn.Module):
|
|
| 81 |
output: Multi-head attention output [batch_size, seq_len, d_model]
|
| 82 |
attention: Attention weights [batch_size, n_heads, seq_len, seq_len]
|
| 83 |
"""
|
| 84 |
-
batch_size = query.size(
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
# Store residual
|
| 88 |
residual = query
|
|
@@ -104,8 +132,10 @@ class MultiHeadAttention(nn.Module):
|
|
| 104 |
output = self.W_o(attn_output)
|
| 105 |
output = self.dropout(output)
|
| 106 |
|
| 107 |
-
# Add and normalize
|
| 108 |
-
output =
|
|
|
|
|
|
|
| 109 |
|
| 110 |
return output, attention_weights
|
| 111 |
|
|
@@ -121,7 +151,9 @@ def create_padding_mask(seq: torch.Tensor, pad_idx: int = 0) -> torch.Tensor:
|
|
| 121 |
Returns:
|
| 122 |
mask: Padding mask [batch_size, 1, 1, seq_len]
|
| 123 |
"""
|
| 124 |
-
|
|
|
|
|
|
|
| 125 |
|
| 126 |
|
| 127 |
def create_look_ahead_mask(size: int, device: torch.device) -> torch.Tensor:
|
|
@@ -135,8 +167,11 @@ def create_look_ahead_mask(size: int, device: torch.device) -> torch.Tensor:
|
|
| 135 |
Returns:
|
| 136 |
mask: Look-ahead mask [1, 1, size, size]
|
| 137 |
"""
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
| 140 |
|
| 141 |
|
| 142 |
def create_masks(src: torch.Tensor, tgt: torch.Tensor,
|
|
@@ -157,14 +192,62 @@ def create_masks(src: torch.Tensor, tgt: torch.Tensor,
|
|
| 157 |
# Source mask (padding only)
|
| 158 |
src_mask = create_padding_mask(src, pad_idx)
|
| 159 |
|
| 160 |
-
# Target
|
| 161 |
tgt_pad_mask = create_padding_mask(tgt, pad_idx)
|
|
|
|
|
|
|
| 162 |
tgt_len = tgt.size(1)
|
| 163 |
tgt_look_ahead_mask = create_look_ahead_mask(tgt_len, tgt.device)
|
| 164 |
-
tgt_mask = tgt_pad_mask.float() * tgt_look_ahead_mask.float()
|
| 165 |
-
tgt_mask = tgt_mask.bool()
|
| 166 |
|
| 167 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
memory_mask = src_mask
|
| 169 |
|
| 170 |
return src_mask, tgt_mask, memory_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
from typing import Optional, Tuple
|
| 6 |
|
| 7 |
class ScaledDotProductAttention(nn.Module):
|
| 8 |
+
"""Scaled Dot-Product Attention mechanism with numerical stability"""
|
| 9 |
|
| 10 |
def __init__(self, temperature: float = 1.0, dropout: float = 0.1):
|
| 11 |
super().__init__()
|
|
|
|
| 25 |
output: Attention output [batch_size, n_heads, seq_len, d_k]
|
| 26 |
attention: Attention weights [batch_size, n_heads, seq_len, seq_len]
|
| 27 |
"""
|
| 28 |
+
# Calculate attention scores with temperature scaling
|
| 29 |
+
d_k = q.size(-1)
|
| 30 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / (self.temperature * math.sqrt(d_k))
|
| 31 |
|
| 32 |
+
# Apply mask if provided - using fp16-safe value
|
| 33 |
if mask is not None:
|
| 34 |
+
# Determine safe mask value based on dtype
|
| 35 |
+
if scores.dtype == torch.float16:
|
| 36 |
+
mask_value = -65504.0 # Max negative value for fp16
|
| 37 |
+
else:
|
| 38 |
+
mask_value = -1e9 # Original value for fp32
|
| 39 |
+
|
| 40 |
+
# Use torch.finfo for more robust dtype handling
|
| 41 |
+
mask_value = torch.finfo(scores.dtype).min if hasattr(torch, 'finfo') else mask_value
|
| 42 |
+
scores = scores.masked_fill(mask == 0, mask_value)
|
| 43 |
+
|
| 44 |
+
# Apply softmax with numerical stability
|
| 45 |
attention = F.softmax(scores, dim=-1)
|
| 46 |
+
|
| 47 |
+
# Apply dropout
|
| 48 |
attention = self.dropout(attention)
|
| 49 |
|
| 50 |
# Apply attention to values
|
|
|
|
| 54 |
|
| 55 |
|
| 56 |
class MultiHeadAttention(nn.Module):
|
| 57 |
+
"""Multi-Head Attention mechanism with improved stability"""
|
| 58 |
|
| 59 |
+
def __init__(self, d_model: int, n_heads: int, dropout: float = 0.1,
|
| 60 |
+
use_bias: bool = True, pre_norm: bool = False):
|
| 61 |
super().__init__()
|
| 62 |
assert d_model % n_heads == 0, "d_model must be divisible by n_heads"
|
| 63 |
|
| 64 |
self.d_model = d_model
|
| 65 |
self.n_heads = n_heads
|
| 66 |
self.d_k = d_model // n_heads
|
| 67 |
+
self.pre_norm = pre_norm
|
| 68 |
+
|
| 69 |
+
# Linear projections with optional bias
|
| 70 |
+
self.W_q = nn.Linear(d_model, d_model, bias=use_bias)
|
| 71 |
+
self.W_k = nn.Linear(d_model, d_model, bias=use_bias)
|
| 72 |
+
self.W_v = nn.Linear(d_model, d_model, bias=use_bias)
|
| 73 |
+
self.W_o = nn.Linear(d_model, d_model, bias=use_bias)
|
| 74 |
|
| 75 |
+
# Initialize weights using Xavier uniform
|
| 76 |
+
self._init_weights()
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
# Attention
|
| 79 |
self.attention = ScaledDotProductAttention(temperature=1.0, dropout=dropout)
|
|
|
|
| 82 |
self.dropout = nn.Dropout(dropout)
|
| 83 |
|
| 84 |
# Layer normalization
|
| 85 |
+
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
|
| 86 |
+
|
| 87 |
+
def _init_weights(self):
|
| 88 |
+
"""Initialize weights with Xavier uniform distribution"""
|
| 89 |
+
for module in [self.W_q, self.W_k, self.W_v, self.W_o]:
|
| 90 |
+
nn.init.xavier_uniform_(module.weight)
|
| 91 |
+
if module.bias is not None:
|
| 92 |
+
nn.init.zeros_(module.bias)
|
| 93 |
+
|
| 94 |
def forward(self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor,
|
| 95 |
mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 96 |
"""
|
|
|
|
| 104 |
output: Multi-head attention output [batch_size, seq_len, d_model]
|
| 105 |
attention: Attention weights [batch_size, n_heads, seq_len, seq_len]
|
| 106 |
"""
|
| 107 |
+
batch_size, seq_len, _ = query.size()
|
| 108 |
+
|
| 109 |
+
# Pre-norm variant (if enabled)
|
| 110 |
+
if self.pre_norm:
|
| 111 |
+
query = self.layer_norm(query)
|
| 112 |
+
key = self.layer_norm(key)
|
| 113 |
+
value = self.layer_norm(value)
|
| 114 |
|
| 115 |
# Store residual
|
| 116 |
residual = query
|
|
|
|
| 132 |
output = self.W_o(attn_output)
|
| 133 |
output = self.dropout(output)
|
| 134 |
|
| 135 |
+
# Add residual and normalize
|
| 136 |
+
output = output + residual
|
| 137 |
+
if not self.pre_norm:
|
| 138 |
+
output = self.layer_norm(output)
|
| 139 |
|
| 140 |
return output, attention_weights
|
| 141 |
|
|
|
|
| 151 |
Returns:
|
| 152 |
mask: Padding mask [batch_size, 1, 1, seq_len]
|
| 153 |
"""
|
| 154 |
+
# Create boolean mask
|
| 155 |
+
mask = (seq != pad_idx).unsqueeze(1).unsqueeze(2)
|
| 156 |
+
return mask.to(torch.bool)
|
| 157 |
|
| 158 |
|
| 159 |
def create_look_ahead_mask(size: int, device: torch.device) -> torch.Tensor:
|
|
|
|
| 167 |
Returns:
|
| 168 |
mask: Look-ahead mask [1, 1, size, size]
|
| 169 |
"""
|
| 170 |
+
# Create upper triangular matrix
|
| 171 |
+
mask = torch.triu(torch.ones(size, size, device=device, dtype=torch.bool), diagonal=1)
|
| 172 |
+
# Invert it (1 for allowed positions, 0 for masked)
|
| 173 |
+
mask = ~mask
|
| 174 |
+
return mask.unsqueeze(0).unsqueeze(0)
|
| 175 |
|
| 176 |
|
| 177 |
def create_masks(src: torch.Tensor, tgt: torch.Tensor,
|
|
|
|
| 192 |
# Source mask (padding only)
|
| 193 |
src_mask = create_padding_mask(src, pad_idx)
|
| 194 |
|
| 195 |
+
# Target padding mask
|
| 196 |
tgt_pad_mask = create_padding_mask(tgt, pad_idx)
|
| 197 |
+
|
| 198 |
+
# Target look-ahead mask
|
| 199 |
tgt_len = tgt.size(1)
|
| 200 |
tgt_look_ahead_mask = create_look_ahead_mask(tgt_len, tgt.device)
|
|
|
|
|
|
|
| 201 |
|
| 202 |
+
# Combine padding and look-ahead masks for target
|
| 203 |
+
# Both masks should be True where attention is allowed
|
| 204 |
+
tgt_mask = tgt_pad_mask & tgt_look_ahead_mask
|
| 205 |
+
|
| 206 |
+
# Memory mask (same as source mask)
|
| 207 |
memory_mask = src_mask
|
| 208 |
|
| 209 |
return src_mask, tgt_mask, memory_mask
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
# Optional: Flash Attention wrapper (if available)
|
| 213 |
+
try:
|
| 214 |
+
from torch.nn.functional import scaled_dot_product_attention
|
| 215 |
+
FLASH_ATTENTION_AVAILABLE = True
|
| 216 |
+
except ImportError:
|
| 217 |
+
FLASH_ATTENTION_AVAILABLE = False
|
| 218 |
+
|
| 219 |
+
class FlashAttention(nn.Module):
|
| 220 |
+
"""Flash Attention wrapper for better performance (if available)"""
|
| 221 |
+
|
| 222 |
+
def __init__(self, dropout: float = 0.1):
|
| 223 |
+
super().__init__()
|
| 224 |
+
self.dropout = dropout
|
| 225 |
+
|
| 226 |
+
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor,
|
| 227 |
+
mask: Optional[torch.Tensor] = None) -> Tuple[torch.Tensor, None]:
|
| 228 |
+
"""
|
| 229 |
+
Uses PyTorch's scaled_dot_product_attention if available (includes Flash Attention)
|
| 230 |
+
"""
|
| 231 |
+
if FLASH_ATTENTION_AVAILABLE and mask is None:
|
| 232 |
+
# Use efficient implementation when no mask
|
| 233 |
+
output = scaled_dot_product_attention(
|
| 234 |
+
q, k, v,
|
| 235 |
+
dropout_p=self.dropout if self.training else 0.0,
|
| 236 |
+
is_causal=False
|
| 237 |
+
)
|
| 238 |
+
return output, None
|
| 239 |
+
else:
|
| 240 |
+
# Fallback to standard implementation
|
| 241 |
+
d_k = q.size(-1)
|
| 242 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
|
| 243 |
+
|
| 244 |
+
if mask is not None:
|
| 245 |
+
mask_value = torch.finfo(scores.dtype).min
|
| 246 |
+
scores = scores.masked_fill(mask == 0, mask_value)
|
| 247 |
+
|
| 248 |
+
attention = F.softmax(scores, dim=-1)
|
| 249 |
+
if self.training and self.dropout > 0:
|
| 250 |
+
attention = F.dropout(attention, p=self.dropout)
|
| 251 |
+
|
| 252 |
+
output = torch.matmul(attention, v)
|
| 253 |
+
return output, attention
|
requirements.txt
CHANGED
|
@@ -17,3 +17,4 @@ aiofiles>=23.1.0
|
|
| 17 |
pytest>=7.3.0
|
| 18 |
black>=23.3.0
|
| 19 |
flake8>=6.0.0
|
|
|
|
|
|
| 17 |
pytest>=7.3.0
|
| 18 |
black>=23.3.0
|
| 19 |
flake8>=6.0.0
|
| 20 |
+
datasets>=4.4.1
|