File size: 5,085 Bytes
aa5ee46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import torch
import torch.nn as nn

from sync_models.modules import *



class Transformer_RGB(nn.Module):

    def __init__(self):
        super().__init__()

        self.net_vid = self.build_net_vid()
        self.ff_vid = nn.Sequential(
                nn.Linear(512, 512),
                nn.ReLU(),
                nn.Linear(512, 1024)
            )

        self.pos_encoder = PositionalEncoding_RGB(d_model=512)
        encoder_layer = nn.TransformerEncoderLayer(d_model=512, nhead=8, batch_first=True)
        self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)

        self.net_aud = self.build_net_aud()
        self.lstm = nn.LSTM(512, 256, num_layers=1, bidirectional=True, batch_first=True)

        self.ff_aud = NetFC_2D(input_dim=512, hidden_dim=512, embed_dim=1024)


        self.logits_scale = nn.Linear(1, 1, bias=False)
        torch.nn.init.ones_(self.logits_scale.weight)

        self.fc = nn.Linear(1,1)

    def build_net_vid(self):
        layers = [
            {
                'type': 'conv3d',
                'n_channels': 64,
                'kernel_size': (5, 7, 7),
                'stride': (1, 3, 3),
                'padding': (0),
                'maxpool': {
                    'kernel_size': (1, 3, 3),
                    'stride': (1, 2, 2)
                }
            },
            {
                'type': 'conv3d',
                'n_channels': 128,
                'kernel_size': (1, 5, 5),
                'stride': (1, 2, 2),
                'padding': (0, 0, 0),
            },
            {
                'type': 'conv3d',
                'n_channels': 256,
                'kernel_size': (1, 3, 3),
                'stride': (1, 2, 2),
                'padding': (0, 1, 1),
            },
            {
                'type': 'conv3d',
                'n_channels': 256,
                'kernel_size': (1, 3, 3),
                'stride': (1, 1, 2),
                'padding': (0, 1, 1),
            },
            {
                'type': 'conv3d',
                'n_channels': 256,
                'kernel_size': (1, 3, 3),
                'stride': (1, 1, 1),
                'padding': (0, 1, 1),
                'maxpool': {
                    'kernel_size': (1, 3, 3),
                    'stride': (1, 2, 2)
                }
            },
            {
                'type': 'fc3d',
                'n_channels': 512,
                'kernel_size': (1, 4, 4),
                'stride': (1, 1, 1),
                'padding': (0),
            },
        ]
        return VGGNet(n_channels_in=3, layers=layers)

    def build_net_aud(self):
        layers = [
            {
                'type': 'conv2d',
                'n_channels': 64,
                'kernel_size': (3, 3),
                'stride': (2, 2),
                'padding': (1, 1),
                'maxpool': {
                    'kernel_size': (3, 3),
                    'stride': (2, 2)
                }
            },
            {
                'type': 'conv2d',
                'n_channels': 192,
                'kernel_size': (3, 3),
                'stride': (1, 2),
                'padding': (1, 1),
                'maxpool': {
                    'kernel_size': (3, 3),
                    'stride': (2, 2)
                }
            },
            {
                'type': 'conv2d',
                'n_channels': 384,
                'kernel_size': (3, 3),
                'stride': (1, 1),
                'padding': (1, 1),
            },
            {
                'type': 'conv2d',
                'n_channels': 256,
                'kernel_size': (3, 3),
                'stride': (1, 1),
                'padding': (1, 1),
            },
            {
                'type': 'conv2d',
                'n_channels': 256,
                'kernel_size': (3, 3),
                'stride': (1, 1),
                'padding': (1, 1),
                'maxpool': {
                    'kernel_size': (2, 3),
                    'stride': (2, 2)
                }
            },
            {
                'type': 'fc2d',
                'n_channels': 512,
                'kernel_size': (4, 2),
                'stride': (1, 1),
                'padding': (0, 0),
            },
        ]
        return VGGNet(n_channels_in=1, layers=layers)

    def forward_vid(self, x, return_feats=False):
        out_conv = self.net_vid(x).squeeze(-1).squeeze(-1)
        # print("Conv: ", out_conv.shape)                          # Bx1024x21x1x1

        out = self.pos_encoder(out_conv.transpose(1,2))
        out_trans = self.transformer_encoder(out)
        # print("Transformer: ", out_trans.shape)                   # Bx21x1024

        out = self.ff_vid(out_trans).transpose(1,2)
        # print("MLP output: ", out.shape)                          # Bx1024

        if return_feats:
            return out, out_conv
        else:
            return out

    def forward_aud(self, x):
        out = self.net_aud(x)
        out = self.ff_aud(out)
        out = out.squeeze(-1)
        return out