Spaces:
Running
Running
Feat: stuff works
Browse files- .gitignore +1 -0
- app.py +228 -35
- src/result.py +3 -0
- src/retrieve_data.py +12 -14
.gitignore
CHANGED
|
@@ -5,6 +5,7 @@ build/
|
|
| 5 |
dist/
|
| 6 |
wheels/
|
| 7 |
*.egg-info
|
|
|
|
| 8 |
|
| 9 |
# Virtual environments
|
| 10 |
.venv
|
|
|
|
| 5 |
dist/
|
| 6 |
wheels/
|
| 7 |
*.egg-info
|
| 8 |
+
*.json
|
| 9 |
|
| 10 |
# Virtual environments
|
| 11 |
.venv
|
app.py
CHANGED
|
@@ -7,6 +7,7 @@ from src.retrieve_data import (
|
|
| 7 |
get_gpus_for_leaderboard,
|
| 8 |
get_leaderboard_names,
|
| 9 |
get_leaderboard_submissions,
|
|
|
|
| 10 |
)
|
| 11 |
|
| 12 |
from src.envs import CACHE_TIMEOUT, BACKGROUND_REFRESH_INTERVAL
|
|
@@ -14,7 +15,6 @@ from src.envs import CACHE_TIMEOUT, BACKGROUND_REFRESH_INTERVAL
|
|
| 14 |
# key: func_name:args:kwargs, value: (timestamp, data)
|
| 15 |
cache = {}
|
| 16 |
|
| 17 |
-
|
| 18 |
active_selections = {
|
| 19 |
"leaderboard": None,
|
| 20 |
"gpu": None,
|
|
@@ -26,9 +26,13 @@ asyncio.set_event_loop(loop)
|
|
| 26 |
background_refresh_running = True
|
| 27 |
|
| 28 |
|
| 29 |
-
def cached_fetch(
|
|
|
|
|
|
|
| 30 |
"""Fetch data with caching to avoid redundant API calls"""
|
| 31 |
-
cache_key =
|
|
|
|
|
|
|
| 32 |
|
| 33 |
current_time = time.time()
|
| 34 |
|
|
@@ -37,7 +41,13 @@ def cached_fetch(func: Callable, *args, force_refresh=False, **kwargs):
|
|
| 37 |
if current_time - timestamp < CACHE_TIMEOUT:
|
| 38 |
return data
|
| 39 |
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
cache[cache_key] = (current_time, result)
|
| 42 |
return result
|
| 43 |
|
|
@@ -80,7 +90,7 @@ background_thread.start()
|
|
| 80 |
def create_table_for_lb(lb_data):
|
| 81 |
headers = [
|
| 82 |
"Rank",
|
| 83 |
-
"
|
| 84 |
"Submission Name",
|
| 85 |
"Runtime (ms)",
|
| 86 |
"Submission Date",
|
|
@@ -99,10 +109,10 @@ def create_table_for_lb(lb_data):
|
|
| 99 |
rows.append(
|
| 100 |
[
|
| 101 |
rank_display,
|
| 102 |
-
result.
|
| 103 |
result.submission_name,
|
| 104 |
f"{float(result.submission_score):.4f}",
|
| 105 |
-
result.submission_time,
|
| 106 |
]
|
| 107 |
)
|
| 108 |
|
|
@@ -113,7 +123,7 @@ def create_table_for_lb(lb_data):
|
|
| 113 |
"int",
|
| 114 |
"str",
|
| 115 |
"str",
|
| 116 |
-
"
|
| 117 |
],
|
| 118 |
value=rows,
|
| 119 |
interactive=False,
|
|
@@ -122,34 +132,71 @@ def create_table_for_lb(lb_data):
|
|
| 122 |
return df
|
| 123 |
|
| 124 |
|
| 125 |
-
def
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
|
|
|
| 147 |
|
| 148 |
-
def build_ui():
|
| 149 |
with gr.Blocks(
|
| 150 |
title="ML Leaderboards",
|
| 151 |
theme=gr.themes.Soft(),
|
| 152 |
css="""
|
|
|
|
| 153 |
.gradio-container table tr:nth-child(1) {
|
| 154 |
background-color: rgba(255, 215, 0, 0.2) !important; /* Gold */
|
| 155 |
}
|
|
@@ -159,7 +206,31 @@ def build_ui():
|
|
| 159 |
.gradio-container table tr:nth-child(3) {
|
| 160 |
background-color: rgba(205, 127, 50, 0.2) !important; /* Bronze */
|
| 161 |
}
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
) as app:
|
| 164 |
gr.Markdown("# 🍿 KernelBot Leaderboard 🍿")
|
| 165 |
|
|
@@ -168,7 +239,19 @@ def build_ui():
|
|
| 168 |
gpu_names = cached_fetch(get_gpus_for_leaderboard, selected_lb)
|
| 169 |
selected_gpu = gpu_names[0]
|
| 170 |
|
| 171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
with gr.Row():
|
| 174 |
with gr.Column(scale=1):
|
|
@@ -186,16 +269,126 @@ def build_ui():
|
|
| 186 |
)
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
lb_dropdown.change(
|
| 192 |
fn=on_lb_change,
|
| 193 |
inputs=[lb_dropdown],
|
| 194 |
-
outputs=[gpu_dropdown, results_table],
|
| 195 |
)
|
| 196 |
|
| 197 |
gpu_dropdown.change(
|
| 198 |
-
fn=update_table,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
)
|
| 200 |
|
| 201 |
return app
|
|
|
|
| 7 |
get_gpus_for_leaderboard,
|
| 8 |
get_leaderboard_names,
|
| 9 |
get_leaderboard_submissions,
|
| 10 |
+
get_submission_count,
|
| 11 |
)
|
| 12 |
|
| 13 |
from src.envs import CACHE_TIMEOUT, BACKGROUND_REFRESH_INTERVAL
|
|
|
|
| 15 |
# key: func_name:args:kwargs, value: (timestamp, data)
|
| 16 |
cache = {}
|
| 17 |
|
|
|
|
| 18 |
active_selections = {
|
| 19 |
"leaderboard": None,
|
| 20 |
"gpu": None,
|
|
|
|
| 26 |
background_refresh_running = True
|
| 27 |
|
| 28 |
|
| 29 |
+
def cached_fetch(
|
| 30 |
+
func: Callable, *args, force_refresh=False, limit=None, offset=0, **kwargs
|
| 31 |
+
):
|
| 32 |
"""Fetch data with caching to avoid redundant API calls"""
|
| 33 |
+
cache_key = (
|
| 34 |
+
f"{func.__name__}:{str(args)}:{str(kwargs)}:limit={limit}:offset={offset}"
|
| 35 |
+
)
|
| 36 |
|
| 37 |
current_time = time.time()
|
| 38 |
|
|
|
|
| 41 |
if current_time - timestamp < CACHE_TIMEOUT:
|
| 42 |
return data
|
| 43 |
|
| 44 |
+
if func.__name__ == "get_leaderboard_submissions":
|
| 45 |
+
result = loop.run_until_complete(
|
| 46 |
+
func(*args, limit=limit, offset=offset, **kwargs)
|
| 47 |
+
)
|
| 48 |
+
else:
|
| 49 |
+
result = loop.run_until_complete(func(*args, **kwargs))
|
| 50 |
+
|
| 51 |
cache[cache_key] = (current_time, result)
|
| 52 |
return result
|
| 53 |
|
|
|
|
| 90 |
def create_table_for_lb(lb_data):
|
| 91 |
headers = [
|
| 92 |
"Rank",
|
| 93 |
+
"User Name",
|
| 94 |
"Submission Name",
|
| 95 |
"Runtime (ms)",
|
| 96 |
"Submission Date",
|
|
|
|
| 109 |
rows.append(
|
| 110 |
[
|
| 111 |
rank_display,
|
| 112 |
+
result.user_name,
|
| 113 |
result.submission_name,
|
| 114 |
f"{float(result.submission_score):.4f}",
|
| 115 |
+
result.submission_time.strftime("%Y-%m-%d %H:%M:%S"),
|
| 116 |
]
|
| 117 |
)
|
| 118 |
|
|
|
|
| 123 |
"int",
|
| 124 |
"str",
|
| 125 |
"str",
|
| 126 |
+
"timestamp",
|
| 127 |
],
|
| 128 |
value=rows,
|
| 129 |
interactive=False,
|
|
|
|
| 132 |
return df
|
| 133 |
|
| 134 |
|
| 135 |
+
def build_ui():
|
| 136 |
+
# Define the function first before using it
|
| 137 |
+
def create_table_for_lb_with_global_rank(lb_data, offset):
|
| 138 |
+
"""Create table with global ranks instead of page-specific ranks"""
|
| 139 |
+
headers = [
|
| 140 |
+
"Rank",
|
| 141 |
+
"User Name",
|
| 142 |
+
"Submission ID",
|
| 143 |
+
"Submission Name",
|
| 144 |
+
"Runtime (ms)",
|
| 145 |
+
"Submission Date",
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
rows = []
|
| 149 |
+
for i, result in enumerate(lb_data.results, 1):
|
| 150 |
+
# Calculate global rank by adding offset
|
| 151 |
+
global_rank = i + offset
|
| 152 |
+
|
| 153 |
+
# Only show medals for the top 3 overall and only on the first page
|
| 154 |
+
if offset == 0 and global_rank <= 3: # first page and top 3
|
| 155 |
+
if global_rank == 1:
|
| 156 |
+
rank_display = "🥇 1"
|
| 157 |
+
elif global_rank == 2:
|
| 158 |
+
rank_display = "🥈 2"
|
| 159 |
+
elif global_rank == 3:
|
| 160 |
+
rank_display = "🥉 3"
|
| 161 |
+
else:
|
| 162 |
+
rank_display = str(global_rank)
|
| 163 |
+
|
| 164 |
+
rows.append(
|
| 165 |
+
[
|
| 166 |
+
rank_display,
|
| 167 |
+
result.user_name,
|
| 168 |
+
str(result.submission_id), # Add submission ID as a new column
|
| 169 |
+
result.submission_name,
|
| 170 |
+
f"{float(result.submission_score):.4f}",
|
| 171 |
+
result.submission_time.strftime("%Y-%m-%d %H:%M:%S"),
|
| 172 |
+
]
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
# Apply different class based on whether it's the first page or not
|
| 176 |
+
elem_classes = "" if offset == 0 else "non-first-page-table"
|
| 177 |
+
|
| 178 |
+
df = gr.Dataframe(
|
| 179 |
+
headers=headers,
|
| 180 |
+
datatype=[
|
| 181 |
+
"str",
|
| 182 |
+
"str",
|
| 183 |
+
"str", # Submission ID
|
| 184 |
+
"str",
|
| 185 |
+
"str",
|
| 186 |
+
"timestamp",
|
| 187 |
+
],
|
| 188 |
+
value=rows,
|
| 189 |
+
interactive=False,
|
| 190 |
+
elem_classes=elem_classes,
|
| 191 |
+
)
|
| 192 |
|
| 193 |
+
return df
|
| 194 |
|
|
|
|
| 195 |
with gr.Blocks(
|
| 196 |
title="ML Leaderboards",
|
| 197 |
theme=gr.themes.Soft(),
|
| 198 |
css="""
|
| 199 |
+
/* Apply medal colors to all tables by default */
|
| 200 |
.gradio-container table tr:nth-child(1) {
|
| 201 |
background-color: rgba(255, 215, 0, 0.2) !important; /* Gold */
|
| 202 |
}
|
|
|
|
| 206 |
.gradio-container table tr:nth-child(3) {
|
| 207 |
background-color: rgba(205, 127, 50, 0.2) !important; /* Bronze */
|
| 208 |
}
|
| 209 |
+
|
| 210 |
+
/* Remove medal colors for non-first pages */
|
| 211 |
+
.non-first-page-table tr:nth-child(1),
|
| 212 |
+
.non-first-page-table tr:nth-child(2),
|
| 213 |
+
.non-first-page-table tr:nth-child(3) {
|
| 214 |
+
background-color: inherit !important;
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
.pagination-controls {
|
| 218 |
+
display: flex;
|
| 219 |
+
justify-content: space-between;
|
| 220 |
+
align-items: center;
|
| 221 |
+
margin-top: 10px;
|
| 222 |
+
width: 100%;
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
.pagination-info {
|
| 226 |
+
text-align: center;
|
| 227 |
+
flex-grow: 1;
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
.pagination-button {
|
| 231 |
+
min-width: 100px;
|
| 232 |
+
}
|
| 233 |
+
""",
|
| 234 |
) as app:
|
| 235 |
gr.Markdown("# 🍿 KernelBot Leaderboard 🍿")
|
| 236 |
|
|
|
|
| 239 |
gpu_names = cached_fetch(get_gpus_for_leaderboard, selected_lb)
|
| 240 |
selected_gpu = gpu_names[0]
|
| 241 |
|
| 242 |
+
# Set default pagination values
|
| 243 |
+
items_per_page = 10
|
| 244 |
+
current_page = 1
|
| 245 |
+
|
| 246 |
+
data = cached_fetch(
|
| 247 |
+
get_leaderboard_submissions,
|
| 248 |
+
selected_lb,
|
| 249 |
+
selected_gpu,
|
| 250 |
+
limit=items_per_page,
|
| 251 |
+
offset=0,
|
| 252 |
+
)
|
| 253 |
+
total_count = cached_fetch(get_submission_count, selected_lb, selected_gpu)
|
| 254 |
+
total_pages = (total_count + items_per_page - 1) // items_per_page
|
| 255 |
|
| 256 |
with gr.Row():
|
| 257 |
with gr.Column(scale=1):
|
|
|
|
| 269 |
)
|
| 270 |
|
| 271 |
with gr.Row():
|
| 272 |
+
# Initial table is first page
|
| 273 |
+
results_table = create_table_for_lb_with_global_rank(data, 0)
|
| 274 |
+
|
| 275 |
+
with gr.Row(elem_classes="pagination-controls"):
|
| 276 |
+
with gr.Column(scale=1, min_width=100, elem_classes="pagination-button"):
|
| 277 |
+
prev_btn = gr.Button("← Previous", interactive=(current_page > 1))
|
| 278 |
+
|
| 279 |
+
with gr.Column(scale=2, elem_classes="pagination-info"):
|
| 280 |
+
page_info = gr.Markdown(f"Page {current_page} of {total_pages}")
|
| 281 |
+
|
| 282 |
+
with gr.Column(scale=1, min_width=100, elem_classes="pagination-button"):
|
| 283 |
+
next_btn = gr.Button("Next →", interactive=(current_page < total_pages))
|
| 284 |
+
|
| 285 |
+
def on_lb_change(lb_name):
|
| 286 |
+
gpu_choices = cached_fetch(get_gpus_for_leaderboard, lb_name)
|
| 287 |
+
|
| 288 |
+
active_selections["leaderboard"] = lb_name
|
| 289 |
+
if gpu_choices:
|
| 290 |
+
active_selections["gpu"] = gpu_choices[0]
|
| 291 |
+
|
| 292 |
+
# Reset to page 1 when changing leaderboard
|
| 293 |
+
data = cached_fetch(
|
| 294 |
+
get_leaderboard_submissions,
|
| 295 |
+
lb_name,
|
| 296 |
+
gpu_choices[0] if gpu_choices else None,
|
| 297 |
+
limit=items_per_page,
|
| 298 |
+
offset=0,
|
| 299 |
+
)
|
| 300 |
+
|
| 301 |
+
# Get total count for pagination
|
| 302 |
+
total_count = cached_fetch(
|
| 303 |
+
get_submission_count, lb_name, gpu_choices[0] if gpu_choices else None
|
| 304 |
+
)
|
| 305 |
+
total_pages = (total_count + items_per_page - 1) // items_per_page
|
| 306 |
+
|
| 307 |
+
return (
|
| 308 |
+
gr.update(
|
| 309 |
+
choices=gpu_choices, value=gpu_choices[0] if gpu_choices else None
|
| 310 |
+
),
|
| 311 |
+
create_table_for_lb_with_global_rank(data, 0),
|
| 312 |
+
gr.update(value=f"Page 1 of {total_pages}"),
|
| 313 |
+
gr.update(interactive=False), # prev button disabled on page 1
|
| 314 |
+
gr.update(
|
| 315 |
+
interactive=(total_pages > 1)
|
| 316 |
+
), # next button enabled if more than 1 page
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
def update_table(lb_name, gpu_name, page=1):
|
| 320 |
+
if not gpu_name:
|
| 321 |
+
return None, gr.update(), gr.update(), gr.update()
|
| 322 |
+
|
| 323 |
+
active_selections["gpu"] = gpu_name
|
| 324 |
+
offset = (page - 1) * items_per_page
|
| 325 |
+
|
| 326 |
+
data = cached_fetch(
|
| 327 |
+
get_leaderboard_submissions,
|
| 328 |
+
lb_name,
|
| 329 |
+
gpu_name,
|
| 330 |
+
limit=items_per_page,
|
| 331 |
+
offset=offset,
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# Get total count for pagination
|
| 335 |
+
total_count = cached_fetch(get_submission_count, lb_name, gpu_name)
|
| 336 |
+
total_pages = (total_count + items_per_page - 1) // items_per_page
|
| 337 |
+
|
| 338 |
+
# Create table with global ranks
|
| 339 |
+
table = create_table_for_lb_with_global_rank(data, offset)
|
| 340 |
+
|
| 341 |
+
return (
|
| 342 |
+
table,
|
| 343 |
+
gr.update(value=f"Page {page} of {total_pages}"),
|
| 344 |
+
gr.update(interactive=(page > 1)),
|
| 345 |
+
gr.update(interactive=(page < total_pages)),
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
def next_page():
|
| 349 |
+
nonlocal current_page
|
| 350 |
+
lb_name = active_selections["leaderboard"]
|
| 351 |
+
gpu_name = active_selections["gpu"]
|
| 352 |
+
|
| 353 |
+
# Get total count to check if we can go to next page
|
| 354 |
+
total_count = cached_fetch(get_submission_count, lb_name, gpu_name)
|
| 355 |
+
total_pages = (total_count + items_per_page - 1) // items_per_page
|
| 356 |
+
|
| 357 |
+
if current_page < total_pages:
|
| 358 |
+
current_page += 1
|
| 359 |
+
return update_table(lb_name, gpu_name, current_page)
|
| 360 |
+
return update_table(lb_name, gpu_name, current_page)
|
| 361 |
+
|
| 362 |
+
def prev_page():
|
| 363 |
+
nonlocal current_page
|
| 364 |
+
if current_page > 1:
|
| 365 |
+
current_page -= 1
|
| 366 |
+
lb_name = active_selections["leaderboard"]
|
| 367 |
+
gpu_name = active_selections["gpu"]
|
| 368 |
+
return update_table(lb_name, gpu_name, current_page)
|
| 369 |
|
| 370 |
lb_dropdown.change(
|
| 371 |
fn=on_lb_change,
|
| 372 |
inputs=[lb_dropdown],
|
| 373 |
+
outputs=[gpu_dropdown, results_table, page_info, prev_btn, next_btn],
|
| 374 |
)
|
| 375 |
|
| 376 |
gpu_dropdown.change(
|
| 377 |
+
fn=lambda lb, gpu: update_table(lb, gpu, 1), # Reset to page 1
|
| 378 |
+
inputs=[lb_dropdown, gpu_dropdown],
|
| 379 |
+
outputs=[results_table, page_info, prev_btn, next_btn],
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
next_btn.click(
|
| 383 |
+
fn=next_page,
|
| 384 |
+
inputs=[],
|
| 385 |
+
outputs=[results_table, page_info, prev_btn, next_btn],
|
| 386 |
+
)
|
| 387 |
+
|
| 388 |
+
prev_btn.click(
|
| 389 |
+
fn=prev_page,
|
| 390 |
+
inputs=[],
|
| 391 |
+
outputs=[results_table, page_info, prev_btn, next_btn],
|
| 392 |
)
|
| 393 |
|
| 394 |
return app
|
src/result.py
CHANGED
|
@@ -10,6 +10,7 @@ class Result:
|
|
| 10 |
submission_score: float
|
| 11 |
submission_id: str
|
| 12 |
user_id: str
|
|
|
|
| 13 |
rank: int
|
| 14 |
|
| 15 |
@classmethod
|
|
@@ -21,6 +22,7 @@ class Result:
|
|
| 21 |
submission_id=data["submission_id"],
|
| 22 |
user_id=data["user_id"],
|
| 23 |
rank=data["rank"],
|
|
|
|
| 24 |
)
|
| 25 |
|
| 26 |
@classmethod
|
|
@@ -36,6 +38,7 @@ class Result:
|
|
| 36 |
"submission_score": self.submission_score,
|
| 37 |
"submission_id": self.submission_id,
|
| 38 |
"user_id": self.user_id,
|
|
|
|
| 39 |
"rank": self.rank,
|
| 40 |
}
|
| 41 |
|
|
|
|
| 10 |
submission_score: float
|
| 11 |
submission_id: str
|
| 12 |
user_id: str
|
| 13 |
+
user_name: str
|
| 14 |
rank: int
|
| 15 |
|
| 16 |
@classmethod
|
|
|
|
| 22 |
submission_id=data["submission_id"],
|
| 23 |
user_id=data["user_id"],
|
| 24 |
rank=data["rank"],
|
| 25 |
+
user_name=data["user_name"],
|
| 26 |
)
|
| 27 |
|
| 28 |
@classmethod
|
|
|
|
| 38 |
"submission_score": self.submission_score,
|
| 39 |
"submission_id": self.submission_id,
|
| 40 |
"user_id": self.user_id,
|
| 41 |
+
"user_name": self.user_name,
|
| 42 |
"rank": self.rank,
|
| 43 |
}
|
| 44 |
|
src/retrieve_data.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
from collections import defaultdict
|
| 2 |
-
|
| 3 |
from httpx import AsyncClient
|
| 4 |
|
| 5 |
from src.envs import API_URL, TIMEOUT
|
|
@@ -20,9 +18,14 @@ async def get_gpus_for_leaderboard(lb_name: str) -> list[str]:
|
|
| 20 |
return response.json()
|
| 21 |
|
| 22 |
|
| 23 |
-
async def get_leaderboard_submissions(
|
|
|
|
|
|
|
| 24 |
async with AsyncClient(timeout=TIMEOUT) as client:
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
| 26 |
response.raise_for_status()
|
| 27 |
return LbData(
|
| 28 |
gpu=gpu,
|
|
@@ -31,13 +34,8 @@ async def get_leaderboard_submissions(lb_name: str, gpu: str) -> LbData:
|
|
| 31 |
)
|
| 32 |
|
| 33 |
|
| 34 |
-
async def
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
for gpu in gpus:
|
| 40 |
-
lb_data = await get_leaderboard_submissions(lb_name, gpu)
|
| 41 |
-
leaderboards[lb_name][gpu] = lb_data
|
| 42 |
-
|
| 43 |
-
return leaderboards
|
|
|
|
|
|
|
|
|
|
| 1 |
from httpx import AsyncClient
|
| 2 |
|
| 3 |
from src.envs import API_URL, TIMEOUT
|
|
|
|
| 18 |
return response.json()
|
| 19 |
|
| 20 |
|
| 21 |
+
async def get_leaderboard_submissions(
|
| 22 |
+
lb_name: str, gpu: str, limit: int = None, offset: int = 0
|
| 23 |
+
) -> LbData:
|
| 24 |
async with AsyncClient(timeout=TIMEOUT) as client:
|
| 25 |
+
params = {"limit": limit, "offset": offset}
|
| 26 |
+
response = await client.get(
|
| 27 |
+
f"{API_URL}/submissions/{lb_name}/{gpu}", params=params
|
| 28 |
+
)
|
| 29 |
response.raise_for_status()
|
| 30 |
return LbData(
|
| 31 |
gpu=gpu,
|
|
|
|
| 34 |
)
|
| 35 |
|
| 36 |
|
| 37 |
+
async def get_submission_count(lb_name: str, gpu: str) -> int:
|
| 38 |
+
async with AsyncClient(timeout=TIMEOUT) as client:
|
| 39 |
+
response = await client.get(f"{API_URL}/submission_count/{lb_name}/{gpu}")
|
| 40 |
+
response.raise_for_status()
|
| 41 |
+
return response.json()["count"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|