File size: 26,013 Bytes
7f09d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import argparse
import diffusers
import logging
import math
import os
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
import warnings
import random

from accelerate import Accelerator
from accelerate.utils import LoggerType
from accelerate import InitProcessGroupKwargs
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs
from datetime import datetime
from datetime import timedelta

from diffusers.utils import check_min_version
from einops import rearrange
from omegaconf import OmegaConf
from tqdm.auto import tqdm

from musetalk.utils.utils import (
    delete_additional_ckpt, 
    seed_everything, 
    get_mouth_region,
    process_audio_features,
    save_models
)
from musetalk.loss.basic_loss import set_requires_grad
from musetalk.loss.syncnet import get_sync_loss
from musetalk.utils.training_utils import (
    initialize_models_and_optimizers,
    initialize_dataloaders,
    initialize_loss_functions,
    initialize_syncnet,
    initialize_vgg,
    validation
)

logger = get_logger(__name__, log_level="INFO")
warnings.filterwarnings("ignore")
check_min_version("0.10.0.dev0")

def main(cfg):
    exp_name = cfg.exp_name
    save_dir = f"{cfg.output_dir}/{exp_name}"
    os.makedirs(save_dir, exist_ok=True)

    kwargs = DistributedDataParallelKwargs()
    process_group_kwargs = InitProcessGroupKwargs(
        timeout=timedelta(seconds=5400))
    accelerator = Accelerator(
        gradient_accumulation_steps=cfg.solver.gradient_accumulation_steps,
        log_with=["tensorboard", LoggerType.TENSORBOARD],
        project_dir=os.path.join(save_dir, "./tensorboard"),
        kwargs_handlers=[kwargs, process_group_kwargs],
    )

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if cfg.seed is not None:
        print('cfg.seed', cfg.seed, accelerator.process_index)
        seed_everything(cfg.seed + accelerator.process_index)

    weight_dtype = torch.float32

    model_dict = initialize_models_and_optimizers(cfg, accelerator, weight_dtype)
    dataloader_dict = initialize_dataloaders(cfg)
    loss_dict = initialize_loss_functions(cfg, accelerator, model_dict['scheduler_max_steps'])
    syncnet = initialize_syncnet(cfg, accelerator, weight_dtype)
    vgg_IN, pyramid, downsampler = initialize_vgg(cfg, accelerator)

    # Prepare everything with our `accelerator`.
    model_dict['net'], model_dict['optimizer'], model_dict['lr_scheduler'], dataloader_dict['train_dataloader'], dataloader_dict['val_dataloader'] = accelerator.prepare(
        model_dict['net'], model_dict['optimizer'], model_dict['lr_scheduler'], dataloader_dict['train_dataloader'], dataloader_dict['val_dataloader']
    )
    print("length train/val", len(dataloader_dict['train_dataloader']), len(dataloader_dict['val_dataloader']))
    
    # Calculate training steps and epochs
    num_update_steps_per_epoch = math.ceil(
        len(dataloader_dict['train_dataloader']) / cfg.solver.gradient_accumulation_steps
    )
    num_train_epochs = math.ceil(
        cfg.solver.max_train_steps / num_update_steps_per_epoch
    )

    # Initialize trackers on the main process
    if accelerator.is_main_process:
        run_time = datetime.now().strftime("%Y%m%d-%H%M")
        accelerator.init_trackers(
            cfg.exp_name,
            init_kwargs={"mlflow": {"run_name": run_time}},
        )

    # Calculate total batch size
    total_batch_size = (
        cfg.data.train_bs
        * accelerator.num_processes
        * cfg.solver.gradient_accumulation_steps
    )

    # Log training information
    logger.info("***** Running training *****")
    logger.info(f"Num Epochs = {num_train_epochs}")
    logger.info(f"Instantaneous batch size per device = {cfg.data.train_bs}")
    logger.info(
        f"Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
    )
    logger.info(
        f"Gradient Accumulation steps = {cfg.solver.gradient_accumulation_steps}")
    logger.info(f"Total optimization steps = {cfg.solver.max_train_steps}")

    global_step = 0
    first_epoch = 0

    # Load checkpoint if resuming training
    if cfg.resume_from_checkpoint:
        resume_dir = save_dir
        dirs = os.listdir(resume_dir)
        dirs = [d for d in dirs if d.startswith("checkpoint")]
        dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
        if len(dirs) > 0:
            path = dirs[-1]
            accelerator.load_state(os.path.join(resume_dir, path))
            accelerator.print(f"Resuming from checkpoint {path}")
            global_step = int(path.split("-")[1])
            first_epoch = global_step // num_update_steps_per_epoch
            resume_step = global_step % num_update_steps_per_epoch

    # Initialize progress bar
    progress_bar = tqdm(
        range(global_step, cfg.solver.max_train_steps),
        disable=not accelerator.is_local_main_process,
    )
    progress_bar.set_description("Steps")
    
    # Log model types
    print("log type of models")
    print("unet", model_dict['unet'].dtype)
    print("vae", model_dict['vae'].dtype)
    print("wav2vec", model_dict['wav2vec'].dtype)

    def get_ganloss_weight(step):
        """Calculate GAN loss weight based on training step"""
        if step < cfg.discriminator_train_params.start_gan:
            return 0.0
        else:
            return 1.0
        
    # Training loop
    for epoch in range(first_epoch, num_train_epochs):
        # Set models to training mode
        model_dict['unet'].train()
        if cfg.loss_params.gan_loss > 0:
            loss_dict['discriminator'].train()
        if cfg.loss_params.mouth_gan_loss > 0:
            loss_dict['mouth_discriminator'].train()

        # Initialize loss accumulators
        train_loss = 0.0
        train_loss_D = 0.0
        train_loss_D_mouth = 0.0
        l1_loss_accum = 0.0
        vgg_loss_accum = 0.0
        gan_loss_accum = 0.0
        gan_loss_accum_mouth = 0.0
        fm_loss_accum = 0.0
        sync_loss_accum = 0.0
        adapted_weight_accum = 0.0

        t_data_start = time.time()
        for step, batch in enumerate(dataloader_dict['train_dataloader']):
            t_data = time.time() - t_data_start
            t_model_start = time.time()

            with torch.no_grad():
                # Process input data
                pixel_values = batch["pixel_values_vid"].to(weight_dtype).to(
                    accelerator.device, 
                    non_blocking=True
                )
                bsz, num_frames, c, h, w = pixel_values.shape
                
                # Process reference images
                ref_pixel_values = batch["pixel_values_ref_img"].to(weight_dtype).to(
                    accelerator.device, 
                    non_blocking=True
                )
                
                # Get face mask for GAN
                pixel_values_face_mask = batch['pixel_values_face_mask']
                
                # Process audio features
                audio_prompts = process_audio_features(cfg, batch, model_dict['wav2vec'], bsz, num_frames, weight_dtype)
                
                # Initialize adapted weight
                adapted_weight = 1
                
                # Process sync loss if enabled
                if cfg.loss_params.sync_loss > 0:
                    mels = batch['mel']
                    # Prepare frames for latentsync (combine channels and frames)
                    gt_frames = rearrange(pixel_values, 'b f c h w-> b (f c) h w')
                    # Use lower half of face for latentsync
                    height = gt_frames.shape[2]
                    gt_frames = gt_frames[:, :, height // 2:, :]
                    
                    # Get audio embeddings
                    audio_embed = syncnet.get_audio_embed(mels)
                    
                    # Calculate adapted weight based on audio-visual similarity
                    if cfg.use_adapted_weight:
                        vision_embed_gt = syncnet.get_vision_embed(gt_frames)
                        image_audio_sim_gt = F.cosine_similarity(
                            audio_embed, 
                            vision_embed_gt, 
                            dim=1
                        )[0]
                        
                        if image_audio_sim_gt < 0.05 or image_audio_sim_gt > 0.65:
                            if cfg.adapted_weight_type == "cut_off":
                                adapted_weight = 0.0  # Skip this batch
                                print(
                                    f"\nThe i-a similarity in step {global_step} is {image_audio_sim_gt}, set adapted_weight to {adapted_weight}.")
                            elif cfg.adapted_weight_type == "linear":
                                adapted_weight = image_audio_sim_gt
                            else:
                                print(f"unknown adapted_weight_type: {cfg.adapted_weight_type}")
                                adapted_weight = 1
                    
                    # Random frame selection for memory efficiency
                    max_start = 16 - cfg.num_backward_frames
                    frames_left_index = random.randint(0, max_start) if max_start > 0 else 0
                    frames_right_index = frames_left_index + cfg.num_backward_frames         
                else:
                    frames_left_index = 0
                    frames_right_index = cfg.data.n_sample_frames

                # Extract frames for backward pass
                pixel_values_backward = pixel_values[:, frames_left_index:frames_right_index, ...]
                ref_pixel_values_backward = ref_pixel_values[:, frames_left_index:frames_right_index, ...]
                pixel_values_face_mask_backward = pixel_values_face_mask[:, frames_left_index:frames_right_index, ...]
                audio_prompts_backward = audio_prompts[:, frames_left_index:frames_right_index, ...]
                
                # Encode target images
                frames = rearrange(pixel_values_backward, 'b f c h w-> (b f) c h w')
                latents = model_dict['vae'].encode(frames).latent_dist.mode()
                latents = latents * model_dict['vae'].config.scaling_factor
                latents = latents.float()

                # Create masked images
                masked_pixel_values = pixel_values_backward.clone()
                masked_pixel_values[:, :, :, h//2:, :] = -1
                masked_frames = rearrange(masked_pixel_values, 'b f c h w -> (b f) c h w')
                masked_latents = model_dict['vae'].encode(masked_frames).latent_dist.mode()
                masked_latents = masked_latents * model_dict['vae'].config.scaling_factor
                masked_latents = masked_latents.float()

                # Encode reference images
                ref_frames = rearrange(ref_pixel_values_backward, 'b f c h w-> (b f) c h w')
                ref_latents = model_dict['vae'].encode(ref_frames).latent_dist.mode()
                ref_latents = ref_latents * model_dict['vae'].config.scaling_factor
                ref_latents = ref_latents.float()

                # Prepare face mask and audio features
                pixel_values_face_mask_backward = rearrange(
                    pixel_values_face_mask_backward, 
                    "b f c h w -> (b f) c h w"
                )
                audio_prompts_backward = rearrange(
                    audio_prompts_backward, 
                    'b f c h w-> (b f) c h w'
                )
                audio_prompts_backward = rearrange(
                    audio_prompts_backward, 
                    '(b f) c h w -> (b f) (c h) w', 
                    b=bsz
                )

            # Apply reference dropout (currently inactive)
            dropout = nn.Dropout(p=cfg.ref_dropout_rate)
            ref_latents = dropout(ref_latents)

            # Prepare model inputs
            input_latents = torch.cat([masked_latents, ref_latents], dim=1)
            input_latents = input_latents.to(weight_dtype)
            timesteps = torch.tensor([0], device=input_latents.device)

            # Forward pass
            latents_pred = model_dict['net'](
                input_latents,
                timesteps,
                audio_prompts_backward,
            )
            latents_pred = (1 / model_dict['vae'].config.scaling_factor) * latents_pred
            image_pred = model_dict['vae'].decode(latents_pred).sample
            
            # Convert to float
            image_pred = image_pred.float()
            frames = frames.float()
            
            # Calculate L1 loss
            l1_loss = loss_dict['L1_loss'](frames, image_pred)
            l1_loss_accum += l1_loss.item()
            loss = cfg.loss_params.l1_loss * l1_loss * adapted_weight

            # Process mouth GAN loss if enabled
            if cfg.loss_params.mouth_gan_loss > 0:
                frames_mouth, image_pred_mouth = get_mouth_region(
                    frames, 
                    image_pred, 
                    pixel_values_face_mask_backward
                )
                pyramide_real_mouth = pyramid(downsampler(frames_mouth))
                pyramide_generated_mouth = pyramid(downsampler(image_pred_mouth))

            # Process VGG loss if enabled
            if cfg.loss_params.vgg_loss > 0:
                pyramide_real = pyramid(downsampler(frames))
                pyramide_generated = pyramid(downsampler(image_pred))

                loss_IN = 0
                for scale in cfg.loss_params.pyramid_scale:
                    x_vgg = vgg_IN(pyramide_generated['prediction_' + str(scale)])
                    y_vgg = vgg_IN(pyramide_real['prediction_' + str(scale)])
                    for i, weight in enumerate(cfg.loss_params.vgg_layer_weight):
                        value = torch.abs(x_vgg[i] - y_vgg[i].detach()).mean()
                        loss_IN += weight * value
                loss_IN /= sum(cfg.loss_params.vgg_layer_weight)
                loss += loss_IN * cfg.loss_params.vgg_loss * adapted_weight
                vgg_loss_accum += loss_IN.item()

            # Process GAN loss if enabled
            if cfg.loss_params.gan_loss > 0:
                set_requires_grad(loss_dict['discriminator'], False)
                loss_G = 0.
                discriminator_maps_generated = loss_dict['discriminator'](pyramide_generated)
                discriminator_maps_real = loss_dict['discriminator'](pyramide_real)

                for scale in loss_dict['disc_scales']:
                    key = 'prediction_map_%s' % scale
                    value = ((1 - discriminator_maps_generated[key]) ** 2).mean()
                    loss_G += value
                gan_loss_accum += loss_G.item()

                loss += loss_G * cfg.loss_params.gan_loss * get_ganloss_weight(global_step) * adapted_weight

                # Process feature matching loss if enabled
                if cfg.loss_params.fm_loss[0] > 0:
                    L_feature_matching = 0.
                    for scale in loss_dict['disc_scales']:
                        key = 'feature_maps_%s' % scale
                        for i, (a, b) in enumerate(zip(discriminator_maps_real[key], discriminator_maps_generated[key])):
                            value = torch.abs(a - b).mean()
                            L_feature_matching += value * cfg.loss_params.fm_loss[i]
                    loss += L_feature_matching * adapted_weight
                    fm_loss_accum += L_feature_matching.item()

            # Process mouth GAN loss if enabled
            if cfg.loss_params.mouth_gan_loss > 0:
                set_requires_grad(loss_dict['mouth_discriminator'], False)
                loss_G = 0.
                mouth_discriminator_maps_generated = loss_dict['mouth_discriminator'](pyramide_generated_mouth)
                mouth_discriminator_maps_real = loss_dict['mouth_discriminator'](pyramide_real_mouth)

                for scale in loss_dict['disc_scales']:
                    key = 'prediction_map_%s' % scale
                    value = ((1 - mouth_discriminator_maps_generated[key]) ** 2).mean()
                    loss_G += value
                gan_loss_accum_mouth += loss_G.item()

                loss += loss_G * cfg.loss_params.mouth_gan_loss * get_ganloss_weight(global_step) * adapted_weight

                # Process feature matching loss for mouth if enabled
                if cfg.loss_params.fm_loss[0] > 0:
                    L_feature_matching = 0.
                    for scale in loss_dict['disc_scales']:
                        key = 'feature_maps_%s' % scale
                        for i, (a, b) in enumerate(zip(mouth_discriminator_maps_real[key], mouth_discriminator_maps_generated[key])):
                            value = torch.abs(a - b).mean()
                            L_feature_matching += value * cfg.loss_params.fm_loss[i]
                    loss += L_feature_matching * adapted_weight
                    fm_loss_accum += L_feature_matching.item()
        
            # Process sync loss if enabled
            if cfg.loss_params.sync_loss > 0:
                pred_frames = rearrange(
                    image_pred, '(b f) c h w-> b (f c) h w', f=pixel_values_backward.shape[1])
                pred_frames = pred_frames[:, :, height // 2 :, :]
                sync_loss, image_audio_sim_pred = get_sync_loss(
                    audio_embed, 
                    gt_frames, 
                    pred_frames, 
                    syncnet, 
                    adapted_weight,
                    frames_left_index=frames_left_index,
                    frames_right_index=frames_right_index,
                )
                sync_loss_accum += sync_loss.item()
                loss += sync_loss * cfg.loss_params.sync_loss * adapted_weight

            # Backward pass
            avg_loss = accelerator.gather(loss.repeat(cfg.data.train_bs)).mean()
            train_loss += avg_loss.item()
            accelerator.backward(loss)

            # Train discriminator if GAN loss is enabled
            if cfg.loss_params.gan_loss > 0:
                set_requires_grad(loss_dict['discriminator'], True)
                loss_D = loss_dict['discriminator_full'](frames, image_pred.detach())
                avg_loss_D = accelerator.gather(loss_D.repeat(cfg.data.train_bs)).mean()
                train_loss_D += avg_loss_D.item() / 1
                loss_D = loss_D * get_ganloss_weight(global_step) * adapted_weight
                accelerator.backward(loss_D)
                
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(
                        loss_dict['discriminator'].parameters(), cfg.solver.max_grad_norm)
                if (global_step + 1) % cfg.solver.gradient_accumulation_steps == 0:
                    loss_dict['optimizer_D'].step()
                    loss_dict['scheduler_D'].step()
                    loss_dict['optimizer_D'].zero_grad()

            # Train mouth discriminator if mouth GAN loss is enabled
            if cfg.loss_params.mouth_gan_loss > 0:
                set_requires_grad(loss_dict['mouth_discriminator'], True)
                mouth_loss_D = loss_dict['mouth_discriminator_full'](
                    frames_mouth, image_pred_mouth.detach())
                avg_mouth_loss_D = accelerator.gather(
                    mouth_loss_D.repeat(cfg.data.train_bs)).mean()
                train_loss_D_mouth += avg_mouth_loss_D.item() / 1
                mouth_loss_D = mouth_loss_D * get_ganloss_weight(global_step) * adapted_weight
                accelerator.backward(mouth_loss_D)
                
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(
                        loss_dict['mouth_discriminator'].parameters(), cfg.solver.max_grad_norm)
                if (global_step + 1) % cfg.solver.gradient_accumulation_steps == 0:
                    loss_dict['mouth_optimizer_D'].step()
                    loss_dict['mouth_scheduler_D'].step()
                    loss_dict['mouth_optimizer_D'].zero_grad()

            # Update main model
            if (global_step + 1) % cfg.solver.gradient_accumulation_steps == 0:
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(
                        model_dict['trainable_params'],
                        cfg.solver.max_grad_norm,
                    )
                model_dict['optimizer'].step()
                model_dict['lr_scheduler'].step()
                model_dict['optimizer'].zero_grad()

            # Update progress and log metrics
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                accelerator.log({
                    "train_loss": train_loss,
                    "train_loss_D": train_loss_D,
                    "train_loss_D_mouth": train_loss_D_mouth,
                    "l1_loss": l1_loss_accum,
                    "vgg_loss": vgg_loss_accum,
                    "gan_loss": gan_loss_accum,
                    "fm_loss": fm_loss_accum,
                    "sync_loss": sync_loss_accum,
                    "adapted_weight": adapted_weight_accum,
                    "lr": model_dict['lr_scheduler'].get_last_lr()[0],
                }, step=global_step)

                # Reset loss accumulators
                train_loss = 0.0
                l1_loss_accum = 0.0
                vgg_loss_accum = 0.0
                gan_loss_accum = 0.0
                fm_loss_accum = 0.0
                sync_loss_accum = 0.0
                adapted_weight_accum = 0.0
                train_loss_D = 0.0
                train_loss_D_mouth = 0.0

                # Run validation if needed
                if global_step % cfg.val_freq == 0 or global_step == 10:
                    try:
                        validation(
                            cfg,
                            dataloader_dict['val_dataloader'],
                            model_dict['net'],
                            model_dict['vae'],
                            model_dict['wav2vec'],
                            accelerator,
                            save_dir,
                            global_step,
                            weight_dtype,
                            syncnet_score=adapted_weight,
                        )
                    except Exception as e:
                        print(f"An error occurred during validation: {e}")

                # Save checkpoint if needed
                if global_step % cfg.checkpointing_steps == 0:
                    save_path = os.path.join(save_dir, f"checkpoint-{global_step}")
                    try:
                        start_time = time.time()
                        if accelerator.is_main_process:
                            save_models(
                                accelerator, 
                                model_dict['net'],
                                save_dir, 
                                global_step, 
                                cfg, 
                                logger=logger
                            )
                            delete_additional_ckpt(save_dir, cfg.total_limit)
                        elapsed_time = time.time() - start_time
                        if elapsed_time > 300:
                            print(f"Skipping storage as it took too long in step {global_step}.")
                        else:
                            print(f"Resume states saved at {save_dir} successfully in {elapsed_time}s.")
                    except Exception as e:
                        print(f"Error when saving model in step {global_step}:", e)

            # Update progress bar
            t_model = time.time() - t_model_start
            logs = {
                "step_loss": loss.detach().item(),
                "lr": model_dict['lr_scheduler'].get_last_lr()[0],
                "td": f"{t_data:.2f}s",
                "tm": f"{t_model:.2f}s",
            }
            t_data_start = time.time()
            progress_bar.set_postfix(**logs)

            if global_step >= cfg.solver.max_train_steps:
                break

        # Save model after each epoch
        if (epoch + 1) % cfg.save_model_epoch_interval == 0:
            try:
                start_time = time.time()
                if accelerator.is_main_process:
                    save_models(accelerator, model_dict['net'], save_dir, global_step, cfg)
                    accelerator.save_state(save_path)
                elapsed_time = time.time() - start_time
                if elapsed_time > 120:
                    print(f"Skipping storage as it took too long in step {global_step}.")
                else:
                    print(f"Model saved successfully in {elapsed_time}s.")
            except Exception as e:
                print(f"Error when saving model in step {global_step}:", e)
        accelerator.wait_for_everyone()

    # End training
    accelerator.end_training()

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--config", type=str, default="./configs/training/stage2.yaml")
    args = parser.parse_args()
    config = OmegaConf.load(args.config)
    main(config)