Spaces:
Runtime error
Runtime error
Commit
·
69b4144
1
Parent(s):
2e20d2b
up
Browse files- load_all_model_info.py +93 -0
load_all_model_info.py
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 3 |
+
from huggingface_hub.repocard import metadata_load
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
METRICS_TO_NOT_DISPLAY = set(["ser"])
|
| 8 |
+
NO_LANGUAGE_MODELS = []
|
| 9 |
+
|
| 10 |
+
api = HfApi()
|
| 11 |
+
models = api.list_models(filter="robust-speech-event")
|
| 12 |
+
|
| 13 |
+
model_ids = [x.modelId for x in models]
|
| 14 |
+
|
| 15 |
+
metadatas = {}
|
| 16 |
+
|
| 17 |
+
for model_id in model_ids:
|
| 18 |
+
readme_path = hf_hub_download(model_id, filename="README.md")
|
| 19 |
+
metadatas[model_id] = metadata_load(readme_path)
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
all_model_results = {}
|
| 23 |
+
# model_id
|
| 24 |
+
# - dataset
|
| 25 |
+
# - metric
|
| 26 |
+
model_language_map = {}
|
| 27 |
+
# model_id: lang
|
| 28 |
+
for model_id, metadata in metadatas.items():
|
| 29 |
+
if "language" not in metadata:
|
| 30 |
+
NO_LANGUAGE_MODELS.append(model_id)
|
| 31 |
+
continue
|
| 32 |
+
lang = metadata["language"]
|
| 33 |
+
model_language_map[model_id] = lang if isinstance(lang, list) else [lang]
|
| 34 |
+
if "model-index" not in metadata:
|
| 35 |
+
all_model_results[model_id] = None
|
| 36 |
+
else:
|
| 37 |
+
result_dict = {}
|
| 38 |
+
for result in metadata["model-index"][0]["results"]:
|
| 39 |
+
dataset = result["dataset"]["type"]
|
| 40 |
+
metrics = [x["type"] for x in result["metrics"]]
|
| 41 |
+
values = [x["value"] if "value" in x else None for x in result["metrics"]]
|
| 42 |
+
result_dict[dataset] = {k: v for k, v in zip(metrics, values)}
|
| 43 |
+
|
| 44 |
+
all_model_results[model_id] = result_dict
|
| 45 |
+
|
| 46 |
+
# get all datasets
|
| 47 |
+
all_datasets = set(sum([list(x.keys()) for x in all_model_results.values() if x is not None], []))
|
| 48 |
+
all_langs = set(sum(list(model_language_map.values()), []))
|
| 49 |
+
|
| 50 |
+
# get all metrics
|
| 51 |
+
all_metrics = []
|
| 52 |
+
for metric_result in all_model_results.values():
|
| 53 |
+
if metric_result is not None:
|
| 54 |
+
all_metrics += sum([list(x.keys()) for x in metric_result.values()], [])
|
| 55 |
+
|
| 56 |
+
all_metrics = set(all_metrics) - METRICS_TO_NOT_DISPLAY
|
| 57 |
+
|
| 58 |
+
# get results table (one table for each dataset, metric)
|
| 59 |
+
all_datasets_results = {}
|
| 60 |
+
pandas_datasets = {}
|
| 61 |
+
for dataset in all_datasets:
|
| 62 |
+
all_datasets_results[dataset] = {}
|
| 63 |
+
pandas_datasets[dataset] = {}
|
| 64 |
+
for metric in all_metrics:
|
| 65 |
+
all_datasets_results[dataset][metric] = {}
|
| 66 |
+
pandas_datasets[dataset][metric] = {}
|
| 67 |
+
for lang in all_langs:
|
| 68 |
+
all_datasets_results[dataset][metric][lang] = {}
|
| 69 |
+
results = {}
|
| 70 |
+
for model_id, model_result in all_model_results.items():
|
| 71 |
+
is_relevant = lang in model_language_map[model_id] and model_result is not None and dataset in model_result and metric in model_result[dataset]
|
| 72 |
+
if not is_relevant:
|
| 73 |
+
continue
|
| 74 |
+
|
| 75 |
+
result = model_result[dataset][metric]
|
| 76 |
+
if isinstance(result, str):
|
| 77 |
+
"".join(result.split("%"))
|
| 78 |
+
try:
|
| 79 |
+
result = float(result)
|
| 80 |
+
except:
|
| 81 |
+
result = None
|
| 82 |
+
elif isinstance(result, float) and result < 1.0:
|
| 83 |
+
# assuming that WER is given in 0.13 format
|
| 84 |
+
result = 100 * result
|
| 85 |
+
results[model_id] = round(result, 2) if result is not None else None
|
| 86 |
+
|
| 87 |
+
results = dict(sorted(results.items(), key=lambda item: (item[1] is None, item[1])))
|
| 88 |
+
all_datasets_results[dataset][metric][lang] = [f"{k}: {v}" for k, v in results.items()]
|
| 89 |
+
|
| 90 |
+
data = all_datasets_results[dataset][metric]
|
| 91 |
+
data_frame = pd.DataFrame.from_dict(data, orient="index")
|
| 92 |
+
data_frame.fillna("", inplace=True)
|
| 93 |
+
pandas_datasets[dataset][metric] = data_frame
|