File size: 18,729 Bytes
bd23e64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fba9477
 
b4b8ec0
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
506ecd3
 
aad8361
 
fba9477
 
 
 
 
 
 
 
 
04be12f
 
 
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b8ec0
fba9477
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd23e64
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426

'''
pip install protobuf==3.20.0
pip uninstall torch torchvision torchaudio
pip install -U torch torchvision torchaudio

'''

'''
import os
from gradio_client import Client, handle_file
from shutil import copy2

# 初始化Gradio客户端
client = Client("http://localhost:7860/")

# 请替换为您准备好的参考音频文件路径
reference_audio = '马正阳英文念白_vocals.wav' 

# 莎士比亚名言列表(英文原文),这里只是示例,您可以自行增删
shakespeare_quotes = [
    "To be, or not to be: that is the question.",
    "All the world's a stage, and all the men and women merely players.",
    "There is nothing either good or bad, but thinking makes it so.",
    "The course of true love never did run smooth.",
    "Love is blind and lovers cannot see the pretty follies that themselves commit.",
    "All that glisters is not gold.",
    "Brevity is the soul of wit.",
    "What's in a name? That which we call a rose by any other word would smell as sweet.",
    "Sweet are the uses of adversity.",
    "Cowards die many times before their deaths; The valiant never taste of death but once."
]

# 输出目录,确保此目录存在
output_dir = 'MaZhengYang_IndexTTS2_Shakespeare_Audio'
os.makedirs(output_dir, exist_ok=True)

for index, quote_text in enumerate(shakespeare_quotes):
    try:
        print(f"Processing {index+1}/{len(shakespeare_quotes)}: {quote_text[:50]}...")

        # 调用Gradio API进行语音合成
        result = client.predict(
            emo_control_method="Same as the voice reference",
            prompt=handle_file(reference_audio), # 使用您提供的参考音频
            text=quote_text, # 填入当前要合成的名言英文原文
            emo_ref_path=None,
            emo_weight=0.8,
            vec1=0,
            vec2=0,
            vec3=0,
            vec4=0,
            vec5=0,
            vec6=0,
            vec7=0,
            vec8=0,
            emo_text="",
            emo_random=False,
            max_text_tokens_per_sentence=120,
            param_16=True,
            param_17=0.8,
            param_18=30,
            param_19=0.8,
            param_20=0,
            param_21=3,
            param_22=10,
            param_23=1500,
            api_name="/gen_single"
        )

        # 假设返回的result是一个字典,且音频文件路径在result["value"]中
        generated_audio_path = result["value"]
        
        # 生成序列号,例如 000001, 000002, ...
        sequence_number = str(index + 1).zfill(6)
        new_audio_filename = f"{sequence_number}.wav"
        new_audio_path = os.path.join(output_dir, new_audio_filename)

        # 复制并重命名音频文件
        copy2(generated_audio_path, new_audio_path)
        print(f"Audio saved to: {new_audio_path}")

        # 创建同名的.txt文件并写入英文名言
        txt_filename = f"{sequence_number}.txt"
        txt_path = os.path.join(output_dir, txt_filename)
        with open(txt_path, 'w', encoding='utf-8') as f:
            f.write(quote_text)
        print(f"Text file saved to: {txt_path}")

    except Exception as e:
        print(f"Error processing quote '{quote_text}': {e}")

print("All processing completed!")

'''

import json
import logging
import spaces
import os
import sys
import threading
import time

import warnings

import pandas as pd

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
sys.path.append(os.path.join(current_dir, "indextts"))

import argparse
parser = argparse.ArgumentParser(description="IndexTTS WebUI")
parser.add_argument("--verbose", action="store_true", default=False, help="Enable verbose mode")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the web UI on")
parser.add_argument("--model_dir", type=str, default="checkpoints", help="Model checkpoints directory")
parser.add_argument("--is_fp16", action="store_true", default=False, help="Fp16 infer")
cmd_args = parser.parse_args()

from tools.download_files import download_model_from_huggingface
download_model_from_huggingface(os.path.join(current_dir,"checkpoints"),
                                os.path.join(current_dir, "checkpoints","hf_cache"))

import gradio as gr
from indextts import infer
from indextts.infer_v2 import IndexTTS2
from tools.i18n.i18n import I18nAuto
from modelscope.hub import api

i18n = I18nAuto(language="Auto")
MODE = 'local'
tts = IndexTTS2(model_dir=cmd_args.model_dir,
                cfg_path=os.path.join(cmd_args.model_dir, "config.yaml"),
                is_fp16=False,use_cuda_kernel=False)

# 支持的语言列表
LANGUAGES = {
    "中文": "zh_CN",
    "English": "en_US"
}
EMO_CHOICES = [i18n("与音色参考音频相同"),
                i18n("使用情感参考音频"),
                i18n("使用情感向量控制"),
                i18n("使用情感描述文本控制")]
os.makedirs("outputs/tasks",exist_ok=True)
os.makedirs("prompts",exist_ok=True)

MAX_LENGTH_TO_USE_SPEED = 70
with open("examples/cases.jsonl", "r", encoding="utf-8") as f:
    example_cases = []
    for line in f:
        line = line.strip()
        if not line:
            continue
        example = json.loads(line)
        if example.get("emo_audio",None):
            emo_audio_path = os.path.join("examples",example["emo_audio"])
        else:
            emo_audio_path = None
        example_cases.append([os.path.join("examples", example.get("prompt_audio", "sample_prompt.wav")),
                              EMO_CHOICES[example.get("emo_mode",0)],
                              example.get("text"),
                             emo_audio_path,
                             example.get("emo_weight",1.0),
                             example.get("emo_text",""),
                             example.get("emo_vec_1",0),
                             example.get("emo_vec_2",0),
                             example.get("emo_vec_3",0),
                             example.get("emo_vec_4",0),
                             example.get("emo_vec_5",0),
                             example.get("emo_vec_6",0),
                             example.get("emo_vec_7",0),
                             example.get("emo_vec_8",0)]
                             )

@spaces.GPU
def gen_single(emo_control_method,prompt, text,
               emo_ref_path, emo_weight,
               vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
               emo_text,emo_random,
               max_text_tokens_per_sentence=120,
                *args, progress=gr.Progress()):
    output_path = None
    if not output_path:
        output_path = os.path.join("outputs", f"spk_{int(time.time())}.wav")
    # set gradio progress
    tts.gr_progress = progress
    do_sample, top_p, top_k, temperature, \
        length_penalty, num_beams, repetition_penalty, max_mel_tokens = args
    kwargs = {
        "do_sample": bool(do_sample),
        "top_p": float(top_p),
        "top_k": int(top_k) if int(top_k) > 0 else None,
        "temperature": float(temperature),
        "length_penalty": float(length_penalty),
        "num_beams": num_beams,
        "repetition_penalty": float(repetition_penalty),
        "max_mel_tokens": int(max_mel_tokens),
        # "typical_sampling": bool(typical_sampling),
        # "typical_mass": float(typical_mass),
    }
    if type(emo_control_method) is not int:
        emo_control_method = emo_control_method.value
    if emo_control_method == 0:
        emo_ref_path = None
        emo_weight = 1.0
    if emo_control_method == 1:
        emo_weight = emo_weight
    if emo_control_method == 2:
        vec = [vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8]
        vec_sum = sum([vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8])
        if vec_sum > 1.5:
            gr.Warning(i18n("情感向量之和不能超过1.5,请调整后重试。"))
            return
    else:
        vec = None

    print(f"Emo control mode:{emo_control_method},vec:{vec}")
    output = tts.infer(spk_audio_prompt=prompt, text=text,
                       output_path=output_path,
                       emo_audio_prompt=emo_ref_path, emo_alpha=emo_weight,
                       emo_vector=vec,
                       use_emo_text=(emo_control_method==3), emo_text=emo_text,use_random=emo_random,
                       verbose=cmd_args.verbose,
                       max_text_tokens_per_sentence=int(max_text_tokens_per_sentence),
                       **kwargs)
    return gr.update(value=output,visible=True)

def update_prompt_audio():
    update_button = gr.update(interactive=True)
    return update_button

with gr.Blocks(title="IndexTTS Demo") as demo:
    mutex = threading.Lock()
    gr.HTML('''
    <h2><center>IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech</h2>
<p align="center">
<a href='https://arxiv.org/abs/2506.21619'><img src='https://img.shields.io/badge/ArXiv-2506.21619-red'></a>
</p>
    ''')
    with gr.Tab(i18n("音频生成")):
        with gr.Row():
            os.makedirs("prompts",exist_ok=True)
            prompt_audio = gr.Audio(label=i18n("音色参考音频"),key="prompt_audio",
                                    sources=["upload","microphone"],type="filepath")
            prompt_list = os.listdir("prompts")
            default = ''
            if prompt_list:
                default = prompt_list[0]
            with gr.Column():
                input_text_single = gr.TextArea(label=i18n("文本"),key="input_text_single", placeholder=i18n("请输入目标文本"), info=f"{i18n('当前模型版本')}{tts.model_version or '1.0'}")
                gen_button = gr.Button(i18n("生成语音"), key="gen_button",interactive=True)
            output_audio = gr.Audio(label=i18n("生成结果"), visible=True,key="output_audio")
        with gr.Accordion(i18n("功能设置")):
            # 情感控制选项部分
            with gr.Row():
                emo_control_method = gr.Radio(
                    choices=EMO_CHOICES,
                    type="index",
                    value=EMO_CHOICES[0],label=i18n("情感控制方式"))
        # 情感参考音频部分
        with gr.Group(visible=False) as emotion_reference_group:
            with gr.Row():
                emo_upload = gr.Audio(label=i18n("上传情感参考音频"), type="filepath")

            with gr.Row():
                emo_weight = gr.Slider(label=i18n("情感权重"), minimum=0.0, maximum=1.6, value=0.8, step=0.01)

        # 情感随机采样
        with gr.Row():
            emo_random = gr.Checkbox(label=i18n("情感随机采样"),value=False,visible=False)

        # 情感向量控制部分
        with gr.Group(visible=False) as emotion_vector_group:
            with gr.Row():
                with gr.Column():
                    vec1 = gr.Slider(label=i18n("喜"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
                    vec2 = gr.Slider(label=i18n("怒"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
                    vec3 = gr.Slider(label=i18n("哀"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
                    vec4 = gr.Slider(label=i18n("惧"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
                with gr.Column():
                    vec5 = gr.Slider(label=i18n("厌恶"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
                    vec6 = gr.Slider(label=i18n("低落"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
                    vec7 = gr.Slider(label=i18n("惊喜"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
                    vec8 = gr.Slider(label=i18n("平静"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)

        with gr.Group(visible=False) as emo_text_group:
            with gr.Row():
                emo_text = gr.Textbox(label=i18n("情感描述文本"), placeholder=i18n("请输入情感描述文本"), value="", info=i18n("例如:高兴,愤怒,悲伤等"))

        with gr.Accordion(i18n("高级生成参数设置"), open=False):
            with gr.Row():
                with gr.Column(scale=1):
                    gr.Markdown(f"**{i18n('GPT2 采样设置')}** _{i18n('参数会影响音频多样性和生成速度详见')}[Generation strategies](https://huggingface.co/docs/transformers/main/en/generation_strategies)_")
                    with gr.Row():
                        do_sample = gr.Checkbox(label="do_sample", value=True, info="是否进行采样")
                        temperature = gr.Slider(label="temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1)
                    with gr.Row():
                        top_p = gr.Slider(label="top_p", minimum=0.0, maximum=1.0, value=0.8, step=0.01)
                        top_k = gr.Slider(label="top_k", minimum=0, maximum=100, value=30, step=1)
                        num_beams = gr.Slider(label="num_beams", value=3, minimum=1, maximum=10, step=1)
                    with gr.Row():
                        repetition_penalty = gr.Number(label="repetition_penalty", precision=None, value=10.0, minimum=0.1, maximum=20.0, step=0.1)
                        length_penalty = gr.Number(label="length_penalty", precision=None, value=0.0, minimum=-2.0, maximum=2.0, step=0.1)
                    max_mel_tokens = gr.Slider(label="max_mel_tokens", value=1500, minimum=50, maximum=tts.cfg.gpt.max_mel_tokens, step=10, info="生成Token最大数量,过小导致音频被截断", key="max_mel_tokens")
                    # with gr.Row():
                    #     typical_sampling = gr.Checkbox(label="typical_sampling", value=False, info="不建议使用")
                    #     typical_mass = gr.Slider(label="typical_mass", value=0.9, minimum=0.0, maximum=1.0, step=0.1)
                with gr.Column(scale=2):
                    gr.Markdown(f'**{i18n("分句设置")}** _{i18n("参数会影响音频质量和生成速度")}_')
                    with gr.Row():
                        max_text_tokens_per_sentence = gr.Slider(
                            label=i18n("分句最大Token数"), value=120, minimum=20, maximum=tts.cfg.gpt.max_text_tokens, step=2, key="max_text_tokens_per_sentence",
                            info=i18n("建议80~200之间,值越大,分句越长;值越小,分句越碎;过小过大都可能导致音频质量不高"),
                        )
                    with gr.Accordion(i18n("预览分句结果"), open=True) as sentences_settings:
                        sentences_preview = gr.Dataframe(
                            headers=[i18n("序号"), i18n("分句内容"), i18n("Token数")],
                            key="sentences_preview",
                            wrap=True,
                        )
            advanced_params = [
                do_sample, top_p, top_k, temperature,
                length_penalty, num_beams, repetition_penalty, max_mel_tokens,
                # typical_sampling, typical_mass,
            ]
        
        if len(example_cases) > 0:
            gr.Examples(
                examples=example_cases,
                examples_per_page=20,
                inputs=[prompt_audio,
                        emo_control_method,
                        input_text_single,
                        emo_upload,
                        emo_weight,
                        emo_text,
                        vec1,vec2,vec3,vec4,vec5,vec6,vec7,vec8]
            )

    def on_input_text_change(text, max_tokens_per_sentence):
        if text and len(text) > 0:
            text_tokens_list = tts.tokenizer.tokenize(text)

            sentences = tts.tokenizer.split_sentences(text_tokens_list, max_tokens_per_sentence=int(max_tokens_per_sentence))
            data = []
            for i, s in enumerate(sentences):
                sentence_str = ''.join(s)
                tokens_count = len(s)
                data.append([i, sentence_str, tokens_count])
            return {
                sentences_preview: gr.update(value=data, visible=True, type="array"),
            }
        else:
            df = pd.DataFrame([], columns=[i18n("序号"), i18n("分句内容"), i18n("Token数")])
            return {
                sentences_preview: gr.update(value=df),
            }
    def on_method_select(emo_control_method):
        if emo_control_method == 1:
            return (gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False)
                    )
        elif emo_control_method == 2:
            return (gr.update(visible=False),
                    gr.update(visible=True),
                    gr.update(visible=True),
                    gr.update(visible=False)
                    )
        elif emo_control_method == 3:
            return (gr.update(visible=False),
                    gr.update(visible=True),
                    gr.update(visible=False),
                    gr.update(visible=True)
                    )
        else:
            return (gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False),
                    gr.update(visible=False)
                    )

    emo_control_method.select(on_method_select,
        inputs=[emo_control_method],
        outputs=[emotion_reference_group,
                 emo_random,
                 emotion_vector_group,
                 emo_text_group]
    )

    input_text_single.change(
        on_input_text_change,
        inputs=[input_text_single, max_text_tokens_per_sentence],
        outputs=[sentences_preview]
    )
    max_text_tokens_per_sentence.change(
        on_input_text_change,
        inputs=[input_text_single, max_text_tokens_per_sentence],
        outputs=[sentences_preview]
    )
    prompt_audio.upload(update_prompt_audio,
                         inputs=[],
                         outputs=[gen_button])

    gen_button.click(gen_single,
                     inputs=[emo_control_method,prompt_audio, input_text_single, emo_upload, emo_weight,
                            vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
                             emo_text,emo_random,
                             max_text_tokens_per_sentence,
                             *advanced_params,
                     ],
                     outputs=[output_audio])



if __name__ == "__main__":
    demo.queue(20)
    demo.launch(server_name="0.0.0.0", server_port=7860, share = True)