Spaces:
Running
Running
| import gradio as gr | |
| from transformers import pipeline | |
| # Load the models | |
| model1 = pipeline("sentiment-analysis", model="mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
| model2 = pipeline("sentiment-analysis", model="mr8488/distilroberta-finetuned-financial-news-sentiment-analysis") | |
| # Define the function to generate responses | |
| def analyze_sentiment(input_text): | |
| result1 = model1(input_text)[0] | |
| result2 = model2(input_text)[0] | |
| return {"mrm8488": f"{result1['label']} ({result1['score']:.2f})", | |
| "mr8488": f"{result2['label']} ({result2['score']:.2f})"} | |
| # Create the Gradio interface | |
| iface = gr.Interface(fn=analyze_sentiment, inputs="text", outputs="text", title="Financial Sentiment Analysis", description="Enter a sentence to analyze its sentiment using two different models.") | |
| # Launch the interface | |
| iface.launch() | |