duyongkun
update app
5de2f8f
import os
import sys
import copy
import importlib
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
from torch.utils.data import DataLoader, DistributedSampler
# 定义支持的 Dataset 类及其对应的模块路径
DATASET_MODULES = {
'SimpleDataSet': 'tools.data.simple_dataset',
'LMDBDataSet': 'tools.data.lmdb_dataset',
'TextLMDBDataSet': 'tools.data.text_lmdb_dataset',
'MultiScaleDataSet': 'tools.data.simple_dataset',
'STRLMDBDataSet': 'tools.data.strlmdb_dataset',
'LMDBDataSetTest': 'tools.data.lmdb_dataset_test',
'RatioDataSet': 'tools.data.ratio_dataset',
'RatioDataSetTest': 'tools.data.ratio_dataset_test',
'RatioDataSetTVResize': 'tools.data.ratio_dataset_tvresize',
'RatioDataSetTVResizeTest': 'tools.data.ratio_dataset_tvresize_test'
}
# 定义支持的 Sampler 类及其对应的模块路径
SAMPLER_MODULES = {
'MultiScaleSampler': 'tools.data.multi_scale_sampler',
'RatioSampler': 'tools.data.ratio_sampler'
}
__all__ = [
'build_dataloader',
]
def build_dataloader(config, mode, logger, seed=None, epoch=3, task='rec'):
config = copy.deepcopy(config)
mode = mode.capitalize() # 确保 mode 是首字母大写形式(Train/Eval/Test)
# 获取 dataset 配置
dataset_config = config[mode]['dataset']
module_name = dataset_config['name']
# 动态导入 dataset 类
if module_name not in DATASET_MODULES:
raise ValueError(
f'Unsupported dataset: {module_name}. Supported datasets: {list(DATASET_MODULES.keys())}'
)
dataset_module = importlib.import_module(DATASET_MODULES[module_name])
dataset_class = getattr(dataset_module, module_name)
dataset = dataset_class(config, mode, logger, seed, epoch=epoch, task=task)
# DataLoader 配置
loader_config = config[mode]['loader']
batch_size = loader_config['batch_size_per_card']
drop_last = loader_config['drop_last']
shuffle = loader_config['shuffle']
num_workers = loader_config['num_workers']
pin_memory = loader_config.get('pin_memory', False)
sampler = None
batch_sampler = None
if 'sampler' in config[mode]:
sampler_config = config[mode]['sampler']
sampler_name = sampler_config.pop('name')
if sampler_name not in SAMPLER_MODULES:
raise ValueError(
f'Unsupported sampler: {sampler_name}. Supported samplers: {list(SAMPLER_MODULES.keys())}'
)
sampler_module = importlib.import_module(SAMPLER_MODULES[sampler_name])
sampler_class = getattr(sampler_module, sampler_name)
batch_sampler = sampler_class(dataset, **sampler_config)
elif config['Global']['distributed'] and mode == 'Train':
sampler = DistributedSampler(dataset=dataset, shuffle=shuffle)
if 'collate_fn' in loader_config:
from . import collate_fn
collate_fn = getattr(collate_fn, loader_config['collate_fn'])()
else:
collate_fn = None
if batch_sampler is None:
data_loader = DataLoader(
dataset=dataset,
sampler=sampler,
num_workers=num_workers,
pin_memory=pin_memory,
collate_fn=collate_fn,
batch_size=batch_size,
drop_last=drop_last,
)
else:
data_loader = DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
pin_memory=pin_memory,
collate_fn=collate_fn,
)
# 检查数据加载器是否为空
if len(data_loader) == 0:
logger.error(
f'No Images in {mode.lower()} dataloader. Please check:\n'
'\t1. The images num in the train label_file_list should be >= batch size.\n'
'\t2. The annotation file and path in the configuration are correct.\n'
'\t3. The BatchSize is not larger than the number of images.')
sys.exit()
return data_loader