Spaces:
Runtime error
Runtime error
vhr1007
commited on
Commit
·
ce94de4
1
Parent(s):
7f062b7
method model call
Browse files
app.py
CHANGED
|
@@ -2,7 +2,8 @@ from huggingface_hub import login
|
|
| 2 |
from fastapi import FastAPI, Depends, HTTPException
|
| 3 |
import logging
|
| 4 |
from pydantic import BaseModel
|
| 5 |
-
from
|
|
|
|
| 6 |
from services.qdrant_searcher import QdrantSearcher
|
| 7 |
from services.openai_service import generate_rag_response
|
| 8 |
from utils.auth import token_required
|
|
@@ -30,7 +31,7 @@ logging.basicConfig(level=logging.INFO)
|
|
| 30 |
huggingface_token = os.getenv('HUGGINGFACE_HUB_TOKEN')
|
| 31 |
if huggingface_token:
|
| 32 |
try:
|
| 33 |
-
login(token=huggingface_token, add_to_git_credential=True
|
| 34 |
logging.info("Successfully logged into Hugging Face Hub.")
|
| 35 |
except Exception as e:
|
| 36 |
logging.error(f"Failed to log into Hugging Face Hub: {e}")
|
|
@@ -45,10 +46,19 @@ access_token = os.getenv('QDRANT_ACCESS_TOKEN')
|
|
| 45 |
if not qdrant_url or not access_token:
|
| 46 |
raise ValueError("Qdrant URL or Access Token is not set. Please set the QDRANT_URL and QDRANT_ACCESS_TOKEN environment variables.")
|
| 47 |
|
| 48 |
-
# Initialize the SentenceTransformer model with
|
| 49 |
try:
|
| 50 |
cache_folder = os.path.join(hf_home_dir, "transformers_cache")
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
logging.info("Successfully loaded the SentenceTransformer model.")
|
| 53 |
except Exception as e:
|
| 54 |
logging.error(f"Failed to load the SentenceTransformer model: {e}")
|
|
|
|
| 2 |
from fastapi import FastAPI, Depends, HTTPException
|
| 3 |
import logging
|
| 4 |
from pydantic import BaseModel
|
| 5 |
+
from transformers import AutoTokenizer, AutoModel
|
| 6 |
+
from sentence_transformers import models, SentenceTransformer
|
| 7 |
from services.qdrant_searcher import QdrantSearcher
|
| 8 |
from services.openai_service import generate_rag_response
|
| 9 |
from utils.auth import token_required
|
|
|
|
| 31 |
huggingface_token = os.getenv('HUGGINGFACE_HUB_TOKEN')
|
| 32 |
if huggingface_token:
|
| 33 |
try:
|
| 34 |
+
login(token=huggingface_token, add_to_git_credential=True)
|
| 35 |
logging.info("Successfully logged into Hugging Face Hub.")
|
| 36 |
except Exception as e:
|
| 37 |
logging.error(f"Failed to log into Hugging Face Hub: {e}")
|
|
|
|
| 46 |
if not qdrant_url or not access_token:
|
| 47 |
raise ValueError("Qdrant URL or Access Token is not set. Please set the QDRANT_URL and QDRANT_ACCESS_TOKEN environment variables.")
|
| 48 |
|
| 49 |
+
# Initialize the SentenceTransformer model with trust_remote_code using transformers
|
| 50 |
try:
|
| 51 |
cache_folder = os.path.join(hf_home_dir, "transformers_cache")
|
| 52 |
+
|
| 53 |
+
# Load the tokenizer and model with trust_remote_code=True
|
| 54 |
+
tokenizer = AutoTokenizer.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
| 55 |
+
model = AutoModel.from_pretrained('nomic-ai/nomic-embed-text-v1.5', trust_remote_code=True)
|
| 56 |
+
|
| 57 |
+
# Wrap the model into a SentenceTransformer
|
| 58 |
+
word_embedding_model = models.Transformer(model_name_or_path='nomic-ai/nomic-embed-text-v1.5', model=model, tokenizer=tokenizer)
|
| 59 |
+
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension())
|
| 60 |
+
encoder = SentenceTransformer(modules=[word_embedding_model, pooling_model])
|
| 61 |
+
|
| 62 |
logging.info("Successfully loaded the SentenceTransformer model.")
|
| 63 |
except Exception as e:
|
| 64 |
logging.error(f"Failed to load the SentenceTransformer model: {e}")
|