Spaces:
Runtime error
Runtime error
upgraded openai version
Browse files- app.py +88 -52
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -26,47 +26,61 @@ hf_home_dir = os.environ["HF_HOME"]
|
|
| 26 |
if not os.path.exists(hf_home_dir):
|
| 27 |
os.makedirs(hf_home_dir)
|
| 28 |
|
| 29 |
-
collection_name = os.getenv(
|
| 30 |
logging.info(f"Collection name: {collection_name}")
|
| 31 |
# Setup logging using Python's standard logging library
|
| 32 |
logging.basicConfig(level=logging.INFO)
|
| 33 |
|
| 34 |
# Load Hugging Face token from environment variable
|
| 35 |
-
huggingface_token = os.getenv(
|
| 36 |
if huggingface_token:
|
| 37 |
try:
|
| 38 |
login(token=huggingface_token, add_to_git_credential=True)
|
| 39 |
logging.info("Successfully logged into Hugging Face Hub.")
|
| 40 |
except Exception as e:
|
| 41 |
logging.error(f"Failed to log into Hugging Face Hub: {e}")
|
| 42 |
-
raise HTTPException(
|
|
|
|
|
|
|
| 43 |
else:
|
| 44 |
-
raise ValueError(
|
|
|
|
|
|
|
| 45 |
|
| 46 |
# Initialize the Qdrant searcher
|
| 47 |
-
qdrant_url = os.getenv(
|
| 48 |
-
access_token = os.getenv(
|
| 49 |
|
| 50 |
if not qdrant_url or not access_token:
|
| 51 |
-
raise ValueError(
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# Load the model and tokenizer with trust_remote_code=True
|
| 54 |
try:
|
| 55 |
cache_folder = os.path.join(hf_home_dir, "transformers_cache")
|
| 56 |
-
|
| 57 |
# Load the tokenizer and model with trust_remote_code=True
|
| 58 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
logging.info("Successfully loaded the model and tokenizer with transformers.")
|
| 62 |
-
|
| 63 |
# Initialize the Qdrant searcher after the model is successfully loaded
|
| 64 |
global searcher # Ensure searcher is accessible globally if needed
|
| 65 |
searcher = QdrantSearcher(qdrant_url=qdrant_url, access_token=access_token)
|
| 66 |
|
| 67 |
except Exception as e:
|
| 68 |
logging.error(f"Failed to load the model or initialize searcher: {e}")
|
| 69 |
-
raise HTTPException(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
# Function to embed text using the model
|
| 72 |
def embed_text(text):
|
|
@@ -75,43 +89,45 @@ def embed_text(text):
|
|
| 75 |
embeddings = outputs.last_hidden_state.mean(dim=1) # Example: mean pooling
|
| 76 |
return embeddings.detach().numpy()
|
| 77 |
|
|
|
|
| 78 |
# Define the request body models
|
| 79 |
class SearchDocumentsRequest(BaseModel):
|
| 80 |
query: str
|
| 81 |
limit: int = 3
|
| 82 |
file_id: str = None
|
| 83 |
|
|
|
|
| 84 |
class GenerateRAGRequest(BaseModel):
|
| 85 |
search_query: str
|
| 86 |
file_id: str = None
|
| 87 |
|
|
|
|
| 88 |
class XApiKeyRequest(BaseModel):
|
| 89 |
organization_id: str
|
| 90 |
user_id: str
|
| 91 |
-
search_query: str
|
| 92 |
file_id: str = None
|
| 93 |
|
| 94 |
-
import os
|
| 95 |
-
|
| 96 |
-
for name, value in os.environ.items():
|
| 97 |
-
print("{0}: {1}".format(name, value))
|
| 98 |
-
|
| 99 |
|
| 100 |
@app.get("/")
|
| 101 |
async def root():
|
| 102 |
-
return {
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
# Define the search documents endpoint
|
| 105 |
@app.post("/api/search-documents")
|
| 106 |
async def search_documents(
|
| 107 |
-
body: SearchDocumentsRequest,
|
| 108 |
-
credentials: tuple = Depends(token_required)
|
| 109 |
):
|
| 110 |
customer_id, user_id = credentials
|
| 111 |
start_time = time.time()
|
| 112 |
if not customer_id or not user_id:
|
| 113 |
logging.error("Failed to extract customer_id or user_id from the JWT token.")
|
| 114 |
-
raise HTTPException(
|
|
|
|
|
|
|
| 115 |
|
| 116 |
logging.info("Received request to search documents")
|
| 117 |
try:
|
|
@@ -120,14 +136,22 @@ async def search_documents(
|
|
| 120 |
# Encode the query using the custom embedding function
|
| 121 |
query_embedding = embed_text(body.query)
|
| 122 |
print(body.query)
|
| 123 |
-
#collection_name = "embed" # Use the collection name where the embeddings are stored
|
| 124 |
logging.info("Performing search using the precomputed embeddings")
|
| 125 |
if body.file_id:
|
| 126 |
-
hits, error = searcher.search_documents(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
else:
|
| 128 |
# Perform search using the precomputed embeddings
|
| 129 |
-
hits, error = searcher.search_documents(
|
| 130 |
-
|
|
|
|
|
|
|
| 131 |
if error:
|
| 132 |
logging.error(f"Search documents error: {error}")
|
| 133 |
raise HTTPException(status_code=500, detail=error)
|
|
@@ -138,33 +162,39 @@ async def search_documents(
|
|
| 138 |
logging.error(f"Unexpected error: {e}")
|
| 139 |
raise HTTPException(status_code=500, detail=str(e))
|
| 140 |
|
|
|
|
| 141 |
# Define the generate RAG response endpoint
|
| 142 |
@app.post("/api/generate-rag-response")
|
| 143 |
async def generate_rag_response_api(
|
| 144 |
-
body: GenerateRAGRequest,
|
| 145 |
-
credentials: tuple = Depends(token_required)
|
| 146 |
):
|
| 147 |
customer_id, user_id = credentials
|
| 148 |
start_time = time.time()
|
| 149 |
if not customer_id or not user_id:
|
| 150 |
logging.error("Failed to extract customer_id or user_id from the JWT token.")
|
| 151 |
-
raise HTTPException(
|
|
|
|
|
|
|
| 152 |
|
| 153 |
logging.info("Received request to generate RAG response")
|
| 154 |
-
|
| 155 |
try:
|
| 156 |
search_time = time.time()
|
| 157 |
logging.info("Starting document search")
|
| 158 |
# Encode the query using the custom embedding function
|
| 159 |
query_embedding = embed_text(body.search_query)
|
| 160 |
print(body.search_query)
|
| 161 |
-
#collection_name = "embed" # Use the collection name where the embeddings are stored
|
| 162 |
# Perform search using the precomputed embeddings
|
| 163 |
if body.file_id:
|
| 164 |
-
hits, error = searcher.search_documents(
|
|
|
|
|
|
|
| 165 |
else:
|
| 166 |
-
hits, error = searcher.search_documents(
|
| 167 |
-
|
|
|
|
|
|
|
| 168 |
if error:
|
| 169 |
logging.error(f"Search documents error: {error}")
|
| 170 |
raise HTTPException(status_code=500, detail=error)
|
|
@@ -177,9 +207,11 @@ async def generate_rag_response_api(
|
|
| 177 |
response, error = generate_rag_response(hits, body.search_query)
|
| 178 |
rag_end_time = time.time()
|
| 179 |
rag_time_taken = rag_end_time - rag_start_time
|
| 180 |
-
end_time= time.time()
|
| 181 |
total_time = end_time - start_time
|
| 182 |
-
logging.info(
|
|
|
|
|
|
|
| 183 |
if error:
|
| 184 |
logging.error(f"Generate RAG response error: {error}")
|
| 185 |
raise HTTPException(status_code=500, detail=error)
|
|
@@ -189,10 +221,10 @@ async def generate_rag_response_api(
|
|
| 189 |
logging.error(f"Unexpected error: {e}")
|
| 190 |
raise HTTPException(status_code=500, detail=str(e))
|
| 191 |
|
|
|
|
| 192 |
@app.post("/api/search-documents/v1")
|
| 193 |
async def search_documents_x_api_key(
|
| 194 |
-
body: XApiKeyRequest,
|
| 195 |
-
authorized: bool = Depends(x_api_key_auth)
|
| 196 |
):
|
| 197 |
if not authorized:
|
| 198 |
raise HTTPException(status_code=401, detail="Unauthorized")
|
|
@@ -201,7 +233,7 @@ async def search_documents_x_api_key(
|
|
| 201 |
user_id = body.user_id
|
| 202 |
file_id = body.file_id
|
| 203 |
|
| 204 |
-
logging.info(f
|
| 205 |
logging.info(f"organization_id: {organization_id}, user_id: {user_id}")
|
| 206 |
logging.info("Received request to search documents with x-api-key auth")
|
| 207 |
try:
|
|
@@ -209,11 +241,13 @@ async def search_documents_x_api_key(
|
|
| 209 |
|
| 210 |
# Encode the query using the custom embedding function
|
| 211 |
query_embedding = embed_text(body.search_query)
|
| 212 |
-
#collection_name = "embed" # Use the collection name where the embeddings are stored
|
| 213 |
|
| 214 |
# Perform search using the precomputed embeddings
|
| 215 |
-
hits, error = searcher.search_documents(
|
| 216 |
-
|
|
|
|
|
|
|
| 217 |
if error:
|
| 218 |
logging.error(f"Search documents error: {error}")
|
| 219 |
raise HTTPException(status_code=500, detail=error)
|
|
@@ -226,10 +260,10 @@ async def search_documents_x_api_key(
|
|
| 226 |
logging.error(f"Unexpected error: {e}")
|
| 227 |
raise HTTPException(status_code=500, detail=str(e))
|
| 228 |
|
|
|
|
| 229 |
@app.post("/api/generate-rag-response/v1")
|
| 230 |
async def generate_rag_response_x_api_key(
|
| 231 |
-
body: XApiKeyRequest,
|
| 232 |
-
authorized: bool = Depends(x_api_key_auth)
|
| 233 |
):
|
| 234 |
# Assuming x_api_key_auth validates the key
|
| 235 |
if not authorized:
|
|
@@ -239,7 +273,7 @@ async def generate_rag_response_x_api_key(
|
|
| 239 |
user_id = body.user_id
|
| 240 |
file_id = body.file_id
|
| 241 |
|
| 242 |
-
logging.info(f
|
| 243 |
logging.info(f"organization_id: {organization_id}, user_id: {user_id}")
|
| 244 |
logging.info("Received request to generate RAG response with x-api-key auth")
|
| 245 |
try:
|
|
@@ -247,11 +281,13 @@ async def generate_rag_response_x_api_key(
|
|
| 247 |
|
| 248 |
# Encode the query using the custom embedding function
|
| 249 |
query_embedding = embed_text(body.search_query)
|
| 250 |
-
#collection_name = "embed" # Use the collection name where the embeddings are stored
|
| 251 |
|
| 252 |
# Perform search using the precomputed embeddings
|
| 253 |
-
hits, error = searcher.search_documents(
|
| 254 |
-
|
|
|
|
|
|
|
| 255 |
if error:
|
| 256 |
logging.error(f"Search documents error: {error}")
|
| 257 |
raise HTTPException(status_code=500, detail=error)
|
|
@@ -260,7 +296,7 @@ async def generate_rag_response_x_api_key(
|
|
| 260 |
|
| 261 |
# Generate the RAG response using the retrieved documents
|
| 262 |
response, error = generate_rag_response(hits, body.search_query)
|
| 263 |
-
|
| 264 |
if error:
|
| 265 |
logging.error(f"Generate RAG response error: {error}")
|
| 266 |
raise HTTPException(status_code=500, detail=error)
|
|
@@ -272,7 +308,7 @@ async def generate_rag_response_x_api_key(
|
|
| 272 |
raise HTTPException(status_code=500, detail=str(e))
|
| 273 |
|
| 274 |
|
| 275 |
-
|
| 276 |
-
if __name__ == '__main__':
|
| 277 |
import uvicorn
|
| 278 |
-
|
|
|
|
|
|
| 26 |
if not os.path.exists(hf_home_dir):
|
| 27 |
os.makedirs(hf_home_dir)
|
| 28 |
|
| 29 |
+
collection_name = os.getenv("QDRANT_COLLECTION_NAME")
|
| 30 |
logging.info(f"Collection name: {collection_name}")
|
| 31 |
# Setup logging using Python's standard logging library
|
| 32 |
logging.basicConfig(level=logging.INFO)
|
| 33 |
|
| 34 |
# Load Hugging Face token from environment variable
|
| 35 |
+
huggingface_token = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
| 36 |
if huggingface_token:
|
| 37 |
try:
|
| 38 |
login(token=huggingface_token, add_to_git_credential=True)
|
| 39 |
logging.info("Successfully logged into Hugging Face Hub.")
|
| 40 |
except Exception as e:
|
| 41 |
logging.error(f"Failed to log into Hugging Face Hub: {e}")
|
| 42 |
+
raise HTTPException(
|
| 43 |
+
status_code=500, detail="Failed to log into Hugging Face Hub."
|
| 44 |
+
)
|
| 45 |
else:
|
| 46 |
+
raise ValueError(
|
| 47 |
+
"Hugging Face token is not set. Please set the HUGGINGFACE_HUB_TOKEN environment variable."
|
| 48 |
+
)
|
| 49 |
|
| 50 |
# Initialize the Qdrant searcher
|
| 51 |
+
qdrant_url = os.getenv("QDRANT_URL")
|
| 52 |
+
access_token = os.getenv("QDRANT_ACCESS_TOKEN")
|
| 53 |
|
| 54 |
if not qdrant_url or not access_token:
|
| 55 |
+
raise ValueError(
|
| 56 |
+
"Qdrant URL or Access Token is not set. Please set the QDRANT_URL and QDRANT_ACCESS_TOKEN environment variables."
|
| 57 |
+
)
|
| 58 |
|
| 59 |
# Load the model and tokenizer with trust_remote_code=True
|
| 60 |
try:
|
| 61 |
cache_folder = os.path.join(hf_home_dir, "transformers_cache")
|
| 62 |
+
|
| 63 |
# Load the tokenizer and model with trust_remote_code=True
|
| 64 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 65 |
+
"nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True
|
| 66 |
+
)
|
| 67 |
+
model = AutoModel.from_pretrained(
|
| 68 |
+
"nomic-ai/nomic-embed-text-v1.5", trust_remote_code=True
|
| 69 |
+
)
|
| 70 |
|
| 71 |
logging.info("Successfully loaded the model and tokenizer with transformers.")
|
| 72 |
+
|
| 73 |
# Initialize the Qdrant searcher after the model is successfully loaded
|
| 74 |
global searcher # Ensure searcher is accessible globally if needed
|
| 75 |
searcher = QdrantSearcher(qdrant_url=qdrant_url, access_token=access_token)
|
| 76 |
|
| 77 |
except Exception as e:
|
| 78 |
logging.error(f"Failed to load the model or initialize searcher: {e}")
|
| 79 |
+
raise HTTPException(
|
| 80 |
+
status_code=500,
|
| 81 |
+
detail="Failed to load the custom model or initialize searcher.",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
|
| 85 |
# Function to embed text using the model
|
| 86 |
def embed_text(text):
|
|
|
|
| 89 |
embeddings = outputs.last_hidden_state.mean(dim=1) # Example: mean pooling
|
| 90 |
return embeddings.detach().numpy()
|
| 91 |
|
| 92 |
+
|
| 93 |
# Define the request body models
|
| 94 |
class SearchDocumentsRequest(BaseModel):
|
| 95 |
query: str
|
| 96 |
limit: int = 3
|
| 97 |
file_id: str = None
|
| 98 |
|
| 99 |
+
|
| 100 |
class GenerateRAGRequest(BaseModel):
|
| 101 |
search_query: str
|
| 102 |
file_id: str = None
|
| 103 |
|
| 104 |
+
|
| 105 |
class XApiKeyRequest(BaseModel):
|
| 106 |
organization_id: str
|
| 107 |
user_id: str
|
| 108 |
+
search_query: str
|
| 109 |
file_id: str = None
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
@app.get("/")
|
| 113 |
async def root():
|
| 114 |
+
return {
|
| 115 |
+
"message": "Welcome to the Search and RAG API!, go to relevant address for API request"
|
| 116 |
+
}
|
| 117 |
+
|
| 118 |
|
| 119 |
# Define the search documents endpoint
|
| 120 |
@app.post("/api/search-documents")
|
| 121 |
async def search_documents(
|
| 122 |
+
body: SearchDocumentsRequest, credentials: tuple = Depends(token_required)
|
|
|
|
| 123 |
):
|
| 124 |
customer_id, user_id = credentials
|
| 125 |
start_time = time.time()
|
| 126 |
if not customer_id or not user_id:
|
| 127 |
logging.error("Failed to extract customer_id or user_id from the JWT token.")
|
| 128 |
+
raise HTTPException(
|
| 129 |
+
status_code=401, detail="Invalid token: missing customer_id or user_id"
|
| 130 |
+
)
|
| 131 |
|
| 132 |
logging.info("Received request to search documents")
|
| 133 |
try:
|
|
|
|
| 136 |
# Encode the query using the custom embedding function
|
| 137 |
query_embedding = embed_text(body.query)
|
| 138 |
print(body.query)
|
| 139 |
+
# collection_name = "embed" # Use the collection name where the embeddings are stored
|
| 140 |
logging.info("Performing search using the precomputed embeddings")
|
| 141 |
if body.file_id:
|
| 142 |
+
hits, error = searcher.search_documents(
|
| 143 |
+
collection_name,
|
| 144 |
+
query_embedding,
|
| 145 |
+
user_id,
|
| 146 |
+
body.limit,
|
| 147 |
+
file_id=body.file_id,
|
| 148 |
+
)
|
| 149 |
else:
|
| 150 |
# Perform search using the precomputed embeddings
|
| 151 |
+
hits, error = searcher.search_documents(
|
| 152 |
+
collection_name, query_embedding, user_id, body.limit
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
if error:
|
| 156 |
logging.error(f"Search documents error: {error}")
|
| 157 |
raise HTTPException(status_code=500, detail=error)
|
|
|
|
| 162 |
logging.error(f"Unexpected error: {e}")
|
| 163 |
raise HTTPException(status_code=500, detail=str(e))
|
| 164 |
|
| 165 |
+
|
| 166 |
# Define the generate RAG response endpoint
|
| 167 |
@app.post("/api/generate-rag-response")
|
| 168 |
async def generate_rag_response_api(
|
| 169 |
+
body: GenerateRAGRequest, credentials: tuple = Depends(token_required)
|
|
|
|
| 170 |
):
|
| 171 |
customer_id, user_id = credentials
|
| 172 |
start_time = time.time()
|
| 173 |
if not customer_id or not user_id:
|
| 174 |
logging.error("Failed to extract customer_id or user_id from the JWT token.")
|
| 175 |
+
raise HTTPException(
|
| 176 |
+
status_code=401, detail="Invalid token: missing customer_id or user_id"
|
| 177 |
+
)
|
| 178 |
|
| 179 |
logging.info("Received request to generate RAG response")
|
| 180 |
+
|
| 181 |
try:
|
| 182 |
search_time = time.time()
|
| 183 |
logging.info("Starting document search")
|
| 184 |
# Encode the query using the custom embedding function
|
| 185 |
query_embedding = embed_text(body.search_query)
|
| 186 |
print(body.search_query)
|
| 187 |
+
# collection_name = "embed" # Use the collection name where the embeddings are stored
|
| 188 |
# Perform search using the precomputed embeddings
|
| 189 |
if body.file_id:
|
| 190 |
+
hits, error = searcher.search_documents(
|
| 191 |
+
collection_name, query_embedding, user_id, file_id=body.file_id
|
| 192 |
+
)
|
| 193 |
else:
|
| 194 |
+
hits, error = searcher.search_documents(
|
| 195 |
+
collection_name, query_embedding, user_id
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
if error:
|
| 199 |
logging.error(f"Search documents error: {error}")
|
| 200 |
raise HTTPException(status_code=500, detail=error)
|
|
|
|
| 207 |
response, error = generate_rag_response(hits, body.search_query)
|
| 208 |
rag_end_time = time.time()
|
| 209 |
rag_time_taken = rag_end_time - rag_start_time
|
| 210 |
+
end_time = time.time()
|
| 211 |
total_time = end_time - start_time
|
| 212 |
+
logging.info(
|
| 213 |
+
f"Search time: {search_time_taken}, RAG time: {rag_time_taken}, Total time: {total_time}"
|
| 214 |
+
)
|
| 215 |
if error:
|
| 216 |
logging.error(f"Generate RAG response error: {error}")
|
| 217 |
raise HTTPException(status_code=500, detail=error)
|
|
|
|
| 221 |
logging.error(f"Unexpected error: {e}")
|
| 222 |
raise HTTPException(status_code=500, detail=str(e))
|
| 223 |
|
| 224 |
+
|
| 225 |
@app.post("/api/search-documents/v1")
|
| 226 |
async def search_documents_x_api_key(
|
| 227 |
+
body: XApiKeyRequest, authorized: bool = Depends(x_api_key_auth)
|
|
|
|
| 228 |
):
|
| 229 |
if not authorized:
|
| 230 |
raise HTTPException(status_code=401, detail="Unauthorized")
|
|
|
|
| 233 |
user_id = body.user_id
|
| 234 |
file_id = body.file_id
|
| 235 |
|
| 236 |
+
logging.info(f"search query {body.search_query}")
|
| 237 |
logging.info(f"organization_id: {organization_id}, user_id: {user_id}")
|
| 238 |
logging.info("Received request to search documents with x-api-key auth")
|
| 239 |
try:
|
|
|
|
| 241 |
|
| 242 |
# Encode the query using the custom embedding function
|
| 243 |
query_embedding = embed_text(body.search_query)
|
| 244 |
+
# collection_name = "embed" # Use the collection name where the embeddings are stored
|
| 245 |
|
| 246 |
# Perform search using the precomputed embeddings
|
| 247 |
+
hits, error = searcher.search_documents(
|
| 248 |
+
collection_name, query_embedding, user_id, limit=3, file_id=file_id
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
if error:
|
| 252 |
logging.error(f"Search documents error: {error}")
|
| 253 |
raise HTTPException(status_code=500, detail=error)
|
|
|
|
| 260 |
logging.error(f"Unexpected error: {e}")
|
| 261 |
raise HTTPException(status_code=500, detail=str(e))
|
| 262 |
|
| 263 |
+
|
| 264 |
@app.post("/api/generate-rag-response/v1")
|
| 265 |
async def generate_rag_response_x_api_key(
|
| 266 |
+
body: XApiKeyRequest, authorized: bool = Depends(x_api_key_auth)
|
|
|
|
| 267 |
):
|
| 268 |
# Assuming x_api_key_auth validates the key
|
| 269 |
if not authorized:
|
|
|
|
| 273 |
user_id = body.user_id
|
| 274 |
file_id = body.file_id
|
| 275 |
|
| 276 |
+
logging.info(f"search query {body.search_query}")
|
| 277 |
logging.info(f"organization_id: {organization_id}, user_id: {user_id}")
|
| 278 |
logging.info("Received request to generate RAG response with x-api-key auth")
|
| 279 |
try:
|
|
|
|
| 281 |
|
| 282 |
# Encode the query using the custom embedding function
|
| 283 |
query_embedding = embed_text(body.search_query)
|
| 284 |
+
# collection_name = "embed" # Use the collection name where the embeddings are stored
|
| 285 |
|
| 286 |
# Perform search using the precomputed embeddings
|
| 287 |
+
hits, error = searcher.search_documents(
|
| 288 |
+
collection_name, query_embedding, user_id, file_id=file_id
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
if error:
|
| 292 |
logging.error(f"Search documents error: {error}")
|
| 293 |
raise HTTPException(status_code=500, detail=error)
|
|
|
|
| 296 |
|
| 297 |
# Generate the RAG response using the retrieved documents
|
| 298 |
response, error = generate_rag_response(hits, body.search_query)
|
| 299 |
+
|
| 300 |
if error:
|
| 301 |
logging.error(f"Generate RAG response error: {error}")
|
| 302 |
raise HTTPException(status_code=500, detail=error)
|
|
|
|
| 308 |
raise HTTPException(status_code=500, detail=str(e))
|
| 309 |
|
| 310 |
|
| 311 |
+
if __name__ == "__main__":
|
|
|
|
| 312 |
import uvicorn
|
| 313 |
+
|
| 314 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
requirements.txt
CHANGED
|
@@ -2,7 +2,7 @@ fastapi==0.111.1
|
|
| 2 |
fastapi-cli==0.0.4
|
| 3 |
uvicorn==0.17.6
|
| 4 |
cryptography>=3.4.7
|
| 5 |
-
openai==1.
|
| 6 |
PyJWT==2.6.0
|
| 7 |
nltk==3.6.7
|
| 8 |
numpy==1.24.0
|
|
|
|
| 2 |
fastapi-cli==0.0.4
|
| 3 |
uvicorn==0.17.6
|
| 4 |
cryptography>=3.4.7
|
| 5 |
+
openai==1.75.0
|
| 6 |
PyJWT==2.6.0
|
| 7 |
nltk==3.6.7
|
| 8 |
numpy==1.24.0
|