trojblue's picture
Update app.py
5859393 verified
raw
history blame
13.8 kB
import io
import json
import struct
import zlib
from typing import List, Dict, Any, Optional, Union
import gradio as gr
from PIL import Image, PngImagePlugin
# -------- THEME (similar to your example) --------
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="violet", radius_size="lg")
# =================================================
# ========== PNG Text Chunk Reader (tab 1) ========
# =================================================
PNG_SIGNATURE = b"\x89PNG\r\n\x1a\n"
def _parse_png_text_chunks(data: bytes) -> List[Dict[str, Any]]:
"""
Parse PNG chunks and extract tEXt, zTXt, and iTXt entries.
"""
if not data.startswith(PNG_SIGNATURE):
raise ValueError("Not a PNG file.")
pos = len(PNG_SIGNATURE)
out = []
while pos + 8 <= len(data):
# Read chunk length and type
length = struct.unpack(">I", data[pos:pos+4])[0]
ctype = data[pos+4:pos+8]
pos += 8
if pos + length + 4 > len(data):
break
cdata = data[pos:pos+length]
pos += length
# Skip CRC (4 bytes)
pos += 4
if ctype == b"tEXt":
# Latin-1: key\0value
try:
null_idx = cdata.index(b"\x00")
key = cdata[:null_idx].decode("latin-1", "replace")
text = cdata[null_idx+1:].decode("latin-1", "replace")
out.append({"type": "tEXt", "keyword": key, "text": text})
except Exception:
pass
elif ctype == b"zTXt":
# key\0compression_method(1) + compressed data
try:
null_idx = cdata.index(b"\x00")
key = cdata[:null_idx].decode("latin-1", "replace")
method = cdata[null_idx+1:null_idx+2]
comp = cdata[null_idx+2:]
if method == b"\x00": # zlib/deflate
text = zlib.decompress(comp).decode("latin-1", "replace")
out.append({"type": "zTXt", "keyword": key, "text": text})
except Exception:
pass
elif ctype == b"iTXt":
# UTF-8: key\0flag(1)\0method(1)\0lang\0translated\0text
try:
i0 = cdata.index(b"\x00")
key = cdata[:i0].decode("latin-1", "replace")
comp_flag = cdata[i0+1:i0+2]
comp_method = cdata[i0+2:i0+3]
rest = cdata[i0+3:]
i1 = rest.index(b"\x00")
language_tag = rest[:i1].decode("ascii", "replace")
rest2 = rest[i1+1:]
i2 = rest2.index(b"\x00")
translated_keyword = rest2[:i2].decode("utf-8", "replace")
text_bytes = rest2[i2+1:]
if comp_flag == b"\x01" and comp_method == b"\x00":
text = zlib.decompress(text_bytes).decode("utf-8", "replace")
else:
text = text_bytes.decode("utf-8", "replace")
out.append({
"type": "iTXt",
"keyword": key,
"language_tag": language_tag,
"translated_keyword": translated_keyword,
"text": text,
})
except Exception:
pass
if ctype == b"IEND":
break
return out
def read_png_info(file_obj) -> Dict[str, Any]:
"""
Given an uploaded file (path or file-like), return structured PNG text info.
Also surface Pillow's .info (which often contains 'parameters').
"""
if hasattr(file_obj, "read"):
data = file_obj.read()
else:
with open(file_obj, "rb") as f:
data = f.read()
chunks = _parse_png_text_chunks(data)
try:
img = Image.open(io.BytesIO(data))
pil_info = dict(img.info)
for k, v in list(pil_info.items()):
if isinstance(v, (bytes, bytearray)):
try:
pil_info[k] = v.decode("utf-8", "replace")
except Exception:
pil_info[k] = repr(v)
elif isinstance(v, PngImagePlugin.PngInfo):
pil_info[k] = "PngInfo(...)"
except Exception as e:
pil_info = {"_error": f"Pillow failed to open PNG: {e}"}
response = {
"found_text_chunks": chunks,
"pil_info": pil_info,
"quick_fields": {
"parameters": next((c["text"] for c in chunks if c.get("keyword") == "parameters"), pil_info.get("parameters")),
"Software": next((c["text"] for c in chunks if c.get("keyword") == "Software"), pil_info.get("Software")),
},
}
return response
def infer_png_text(file):
if file is None:
return {"error": "Please upload a PNG file."}
try:
return read_png_info(file.name if hasattr(file, "name") else file)
except Exception as e:
return {"error": str(e)}
# =================================================
# ========== NovelAI LSB Reader (tab 2) ===========
# =================================================
# (User-provided logic, lightly wrapped for Gradio.)
import numpy as np
import gzip
from pathlib import Path
from io import BytesIO
def _pack_lsb_bytes(alpha: np.ndarray) -> np.ndarray:
"""
Pack the least significant bits (LSB) from an image's alpha channel into bytes.
"""
alpha = alpha.T.reshape((-1,))
alpha = alpha[:(alpha.shape[0] // 8) * 8]
alpha = np.bitwise_and(alpha, 1)
alpha = alpha.reshape((-1, 8))
alpha = np.packbits(alpha, axis=1)
return alpha
class LSBReader:
"""
Utility class for reading hidden data from an image's alpha channel using LSB encoding.
"""
def __init__(self, data: np.ndarray):
self.data = _pack_lsb_bytes(data[..., -1])
self.pos = 0
def read_bytes(self, n: int) -> bytearray:
"""Read `n` bytes from the bitstream."""
n_bytes = self.data[self.pos:self.pos + n]
self.pos += n
return bytearray(n_bytes.flatten().tolist())
def read_int32(self) -> Optional[int]:
"""Read a 4-byte big-endian integer from the bitstream."""
bytes_list = self.read_bytes(4)
return int.from_bytes(bytes_list, 'big') if len(bytes_list) == 4 else None
def _extract_nai_metadata_from_image(image: Image.Image) -> dict:
"""
Extract embedded metadata from a PNG image generated by NovelAI.
"""
image_array = np.array(image.convert("RGBA"))
if image_array.shape[-1] != 4 or len(image_array.shape) != 3:
raise ValueError("Image must be in RGBA format")
reader = LSBReader(image_array)
magic = "stealth_pngcomp"
if reader.read_bytes(len(magic)).decode("utf-8", "replace") != magic:
raise ValueError("Invalid magic number (not NovelAI stealth payload)")
bit_len = reader.read_int32()
if bit_len is None or bit_len <= 0:
raise ValueError("Invalid payload length")
json_len = bit_len // 8
compressed_json = reader.read_bytes(json_len)
json_data = json.loads(gzip.decompress(bytes(compressed_json)).decode("utf-8"))
if "Comment" in json_data and isinstance(json_data["Comment"], str):
try:
json_data["Comment"] = json.loads(json_data["Comment"])
except Exception:
# Leave as-is if not valid JSON
pass
return json_data
def extract_nai_metadata(image: Union[Image.Image, str, Path]) -> dict:
if isinstance(image, (str, Path)):
image = Image.open(image)
elif not isinstance(image, Image.Image):
raise ValueError("Input must be a file path (string/Path) or a PIL Image")
return _extract_nai_metadata_from_image(image)
def extract_nai_caption_from_hf_img(hf_img: dict) -> Optional[str]:
image_bytes = hf_img['bytes']
pil_image = Image.open(BytesIO(image_bytes))
metadata = extract_nai_metadata(pil_image)
return metadata.get('Description')
def infer_nai(image: Optional[Image.Image]):
if image is None:
return None, {"error": "Please upload a PNG with alpha channel (RGBA)."}
try:
meta = extract_nai_metadata(image)
description = meta.get("Description")
return description, meta
except Exception as e:
return None, {"error": str(e)}
# =================================================
# =========== Similarity Metrics (tab 3) ===========
# =================================================
def _load_rgb_image(path: Union[str, Path]) -> np.ndarray:
"""Load an image file as RGB uint8 numpy array."""
img = Image.open(path).convert("RGB")
return np.array(img, dtype=np.uint8)
def _pixel_metrics(img_a: np.ndarray, img_b: np.ndarray) -> Dict[str, float]:
"""Compute basic pixel-wise similarity metrics between two RGB images."""
if img_a.shape != img_b.shape:
raise ValueError(f"Image size mismatch: {img_a.shape} vs {img_b.shape}")
diff = img_a.astype(np.float32) - img_b.astype(np.float32)
abs_diff = np.abs(diff)
mse = float(np.mean(diff ** 2))
mae = float(np.mean(abs_diff))
max_abs = float(np.max(abs_diff))
pixel_match = float(np.mean(img_a == img_b))
pixel_diff_pct = float(100.0 * (1.0 - pixel_match))
if mse == 0.0:
psnr = float("inf")
else:
psnr = float(20.0 * np.log10(255.0 / np.sqrt(mse)))
return {
"pixel_diff_pct": pixel_diff_pct,
"pixel_match": pixel_match,
"mse": mse,
"mae": mae,
"max_abs": max_abs,
"psnr": psnr,
}
def compute_similarity_report(files: Optional[List[str]]) -> str:
if not files or len(files) < 2:
return "Upload at least two images to compare (first file is treated as base)."
try:
images: Dict[str, np.ndarray] = {}
base_name = None
base_img = None
for idx, file_path in enumerate(files):
name = Path(file_path).name
images[name] = _load_rgb_image(file_path)
if idx == 0:
base_name = name
base_img = images[name]
if base_name is None or base_img is None:
return "Failed to load base image."
metrics: Dict[str, Dict[str, float]] = {}
# Base vs others
for name, img in images.items():
if name == base_name:
continue
metrics[f"{base_name}_vs_{name}"] = _pixel_metrics(base_img, img)
# Pairwise among non-base images
other_keys = [k for k in images.keys() if k != base_name]
for i in range(len(other_keys)):
for j in range(i + 1, len(other_keys)):
k1, k2 = other_keys[i], other_keys[j]
metrics[f"{k1}_vs_{k2}"] = _pixel_metrics(images[k1], images[k2])
lines = [
"=== similarity metrics ===",
f"Base image: {base_name}",
]
for name, vals in metrics.items():
lines.append(
(
f"{name}: pixel_diff_pct={vals['pixel_diff_pct']:.6f}%, "
f"pixel_match={vals['pixel_match']:.6f}, mse={vals['mse']:.6e}, "
f"mae={vals['mae']:.6e}, max_abs={vals['max_abs']:.6e}, "
f"psnr={vals['psnr']:.2f}dB"
)
)
lines.append("\nMetrics (JSON):")
lines.append(json.dumps(metrics, indent=2))
return "\n".join(lines)
except Exception as exc: # pragma: no cover - handled for UI
return f"Error computing metrics: {exc}"
# =================================================
# =============== Gradio App (two tabs) ===========
# =================================================
with gr.Blocks(title="PNG Tools — ImageInfo & NovelAI Reader", theme=theme, analytics_enabled=False) as demo:
gr.Markdown("# PNG Tools\nTwo utilities: PNG text-chunk metadata and NovelAI LSB metadata.")
with gr.Tabs():
with gr.Tab("PNG ImageInfo Reader"):
with gr.Row():
inp_png = gr.File(label="PNG file", file_types=[".png"])
out_png = gr.JSON(label="pngImageInfo")
inp_png.change(fn=infer_png_text, inputs=inp_png, outputs=out_png)
gr.Markdown("Tip: Stable Diffusion ‘parameters’ often appear under a **tEXt** chunk with keyword `parameters`.")
with gr.Tab("NovelAI Reader"):
with gr.Row():
nai_img = gr.Image(label="Upload PNG (RGBA preferred)", type="pil", height=360)
with gr.Row():
nai_btn = gr.Button("Extract NovelAI Metadata", variant="primary")
with gr.Row():
nai_desc = gr.Textbox(label="Description (if present)", lines=4)
nai_json = gr.JSON(label="Decoded NovelAI JSON")
nai_btn.click(fn=infer_nai, inputs=nai_img, outputs=[nai_desc, nai_json])
with gr.Tab("Similarity Metrics"):
gr.Markdown("Upload multiple images; the first file is treated as the base for comparisons.")
files_in = gr.Files(
label="Image files",
# Explicit list ensures WebP acceptance across Gradio builds
file_types=[
".png", ".jpg", ".jpeg", ".webp", ".gif",
".bmp", ".tif", ".tiff", ".jfif"
],
type="filepath",
interactive=True,
)
with gr.Row():
metrics_btn = gr.Button("Compute Similarity", variant="primary")
metrics_out = gr.Textbox(label="Similarity report", lines=14, show_copy_button=True)
metrics_btn.click(fn=compute_similarity_report, inputs=files_in, outputs=metrics_out)
if __name__ == "__main__":
demo.launch()