Update app.py
Browse files
app.py
CHANGED
|
@@ -1,378 +1,156 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
import struct
|
| 4 |
-
import zlib
|
| 5 |
-
from typing import List, Dict, Any, Optional, Union
|
| 6 |
|
| 7 |
-
import
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# -------- THEME (similar to your example) --------
|
| 11 |
-
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="violet", radius_size="lg")
|
| 12 |
-
|
| 13 |
-
# =================================================
|
| 14 |
-
# ========== PNG Text Chunk Reader (tab 1) ========
|
| 15 |
-
# =================================================
|
| 16 |
-
|
| 17 |
-
PNG_SIGNATURE = b"\x89PNG\r\n\x1a\n"
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
def _parse_png_text_chunks(data: bytes) -> List[Dict[str, Any]]:
|
| 21 |
-
"""
|
| 22 |
-
Parse PNG chunks and extract tEXt, zTXt, and iTXt entries.
|
| 23 |
-
"""
|
| 24 |
-
if not data.startswith(PNG_SIGNATURE):
|
| 25 |
-
raise ValueError("Not a PNG file.")
|
| 26 |
-
|
| 27 |
-
pos = len(PNG_SIGNATURE)
|
| 28 |
-
out = []
|
| 29 |
-
|
| 30 |
-
while pos + 8 <= len(data):
|
| 31 |
-
# Read chunk length and type
|
| 32 |
-
length = struct.unpack(">I", data[pos:pos+4])[0]
|
| 33 |
-
ctype = data[pos+4:pos+8]
|
| 34 |
-
pos += 8
|
| 35 |
-
|
| 36 |
-
if pos + length + 4 > len(data):
|
| 37 |
-
break
|
| 38 |
-
|
| 39 |
-
cdata = data[pos:pos+length]
|
| 40 |
-
pos += length
|
| 41 |
-
|
| 42 |
-
# Skip CRC (4 bytes)
|
| 43 |
-
pos += 4
|
| 44 |
-
|
| 45 |
-
if ctype == b"tEXt":
|
| 46 |
-
# Latin-1: key\0value
|
| 47 |
-
try:
|
| 48 |
-
null_idx = cdata.index(b"\x00")
|
| 49 |
-
key = cdata[:null_idx].decode("latin-1", "replace")
|
| 50 |
-
text = cdata[null_idx+1:].decode("latin-1", "replace")
|
| 51 |
-
out.append({"type": "tEXt", "keyword": key, "text": text})
|
| 52 |
-
except Exception:
|
| 53 |
-
pass
|
| 54 |
-
|
| 55 |
-
elif ctype == b"zTXt":
|
| 56 |
-
# key\0compression_method(1) + compressed data
|
| 57 |
-
try:
|
| 58 |
-
null_idx = cdata.index(b"\x00")
|
| 59 |
-
key = cdata[:null_idx].decode("latin-1", "replace")
|
| 60 |
-
method = cdata[null_idx+1:null_idx+2]
|
| 61 |
-
comp = cdata[null_idx+2:]
|
| 62 |
-
if method == b"\x00": # zlib/deflate
|
| 63 |
-
text = zlib.decompress(comp).decode("latin-1", "replace")
|
| 64 |
-
out.append({"type": "zTXt", "keyword": key, "text": text})
|
| 65 |
-
except Exception:
|
| 66 |
-
pass
|
| 67 |
-
|
| 68 |
-
elif ctype == b"iTXt":
|
| 69 |
-
# UTF-8: key\0flag(1)\0method(1)\0lang\0translated\0text
|
| 70 |
-
try:
|
| 71 |
-
i0 = cdata.index(b"\x00")
|
| 72 |
-
key = cdata[:i0].decode("latin-1", "replace")
|
| 73 |
-
comp_flag = cdata[i0+1:i0+2]
|
| 74 |
-
comp_method = cdata[i0+2:i0+3]
|
| 75 |
-
rest = cdata[i0+3:]
|
| 76 |
-
|
| 77 |
-
i1 = rest.index(b"\x00")
|
| 78 |
-
language_tag = rest[:i1].decode("ascii", "replace")
|
| 79 |
-
rest2 = rest[i1+1:]
|
| 80 |
-
|
| 81 |
-
i2 = rest2.index(b"\x00")
|
| 82 |
-
translated_keyword = rest2[:i2].decode("utf-8", "replace")
|
| 83 |
-
text_bytes = rest2[i2+1:]
|
| 84 |
-
|
| 85 |
-
if comp_flag == b"\x01" and comp_method == b"\x00":
|
| 86 |
-
text = zlib.decompress(text_bytes).decode("utf-8", "replace")
|
| 87 |
-
else:
|
| 88 |
-
text = text_bytes.decode("utf-8", "replace")
|
| 89 |
-
|
| 90 |
-
out.append({
|
| 91 |
-
"type": "iTXt",
|
| 92 |
-
"keyword": key,
|
| 93 |
-
"language_tag": language_tag,
|
| 94 |
-
"translated_keyword": translated_keyword,
|
| 95 |
-
"text": text,
|
| 96 |
-
})
|
| 97 |
-
except Exception:
|
| 98 |
-
pass
|
| 99 |
-
|
| 100 |
-
if ctype == b"IEND":
|
| 101 |
-
break
|
| 102 |
-
|
| 103 |
-
return out
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def read_png_info(file_obj) -> Dict[str, Any]:
|
| 107 |
-
"""
|
| 108 |
-
Given an uploaded file (path or file-like), return structured PNG text info.
|
| 109 |
-
Also surface Pillow's .info (which often contains 'parameters').
|
| 110 |
-
"""
|
| 111 |
-
if hasattr(file_obj, "read"):
|
| 112 |
-
data = file_obj.read()
|
| 113 |
-
else:
|
| 114 |
-
with open(file_obj, "rb") as f:
|
| 115 |
-
data = f.read()
|
| 116 |
-
|
| 117 |
-
chunks = _parse_png_text_chunks(data)
|
| 118 |
-
|
| 119 |
-
try:
|
| 120 |
-
img = Image.open(io.BytesIO(data))
|
| 121 |
-
pil_info = dict(img.info)
|
| 122 |
-
for k, v in list(pil_info.items()):
|
| 123 |
-
if isinstance(v, (bytes, bytearray)):
|
| 124 |
-
try:
|
| 125 |
-
pil_info[k] = v.decode("utf-8", "replace")
|
| 126 |
-
except Exception:
|
| 127 |
-
pil_info[k] = repr(v)
|
| 128 |
-
elif isinstance(v, PngImagePlugin.PngInfo):
|
| 129 |
-
pil_info[k] = "PngInfo(...)"
|
| 130 |
-
except Exception as e:
|
| 131 |
-
pil_info = {"_error": f"Pillow failed to open PNG: {e}"}
|
| 132 |
-
|
| 133 |
-
response = {
|
| 134 |
-
"found_text_chunks": chunks,
|
| 135 |
-
"pil_info": pil_info,
|
| 136 |
-
"quick_fields": {
|
| 137 |
-
"parameters": next((c["text"] for c in chunks if c.get("keyword") == "parameters"), pil_info.get("parameters")),
|
| 138 |
-
"Software": next((c["text"] for c in chunks if c.get("keyword") == "Software"), pil_info.get("Software")),
|
| 139 |
-
},
|
| 140 |
-
}
|
| 141 |
-
return response
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def infer_png_text(file):
|
| 145 |
-
if file is None:
|
| 146 |
-
return {"error": "Please upload a PNG file."}
|
| 147 |
-
try:
|
| 148 |
-
return read_png_info(file.name if hasattr(file, "name") else file)
|
| 149 |
-
except Exception as e:
|
| 150 |
-
return {"error": str(e)}
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
# =================================================
|
| 154 |
-
# ========== NovelAI LSB Reader (tab 2) ===========
|
| 155 |
-
# =================================================
|
| 156 |
-
|
| 157 |
-
# (User-provided logic, lightly wrapped for Gradio.)
|
| 158 |
-
import numpy as np
|
| 159 |
-
import gzip
|
| 160 |
from pathlib import Path
|
| 161 |
-
from
|
| 162 |
-
|
| 163 |
-
def _pack_lsb_bytes(alpha: np.ndarray) -> np.ndarray:
|
| 164 |
-
"""
|
| 165 |
-
Pack the least significant bits (LSB) from an image's alpha channel into bytes.
|
| 166 |
-
"""
|
| 167 |
-
alpha = alpha.T.reshape((-1,))
|
| 168 |
-
alpha = alpha[:(alpha.shape[0] // 8) * 8]
|
| 169 |
-
alpha = np.bitwise_and(alpha, 1)
|
| 170 |
-
alpha = alpha.reshape((-1, 8))
|
| 171 |
-
alpha = np.packbits(alpha, axis=1)
|
| 172 |
-
return alpha
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
class LSBReader:
|
| 176 |
-
"""
|
| 177 |
-
Utility class for reading hidden data from an image's alpha channel using LSB encoding.
|
| 178 |
-
"""
|
| 179 |
-
def __init__(self, data: np.ndarray):
|
| 180 |
-
self.data = _pack_lsb_bytes(data[..., -1])
|
| 181 |
-
self.pos = 0
|
| 182 |
-
|
| 183 |
-
def read_bytes(self, n: int) -> bytearray:
|
| 184 |
-
"""Read `n` bytes from the bitstream."""
|
| 185 |
-
n_bytes = self.data[self.pos:self.pos + n]
|
| 186 |
-
self.pos += n
|
| 187 |
-
return bytearray(n_bytes.flatten().tolist())
|
| 188 |
-
|
| 189 |
-
def read_int32(self) -> Optional[int]:
|
| 190 |
-
"""Read a 4-byte big-endian integer from the bitstream."""
|
| 191 |
-
bytes_list = self.read_bytes(4)
|
| 192 |
-
return int.from_bytes(bytes_list, 'big') if len(bytes_list) == 4 else None
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
def _extract_nai_metadata_from_image(image: Image.Image) -> dict:
|
| 196 |
-
"""
|
| 197 |
-
Extract embedded metadata from a PNG image generated by NovelAI.
|
| 198 |
-
"""
|
| 199 |
-
image_array = np.array(image.convert("RGBA"))
|
| 200 |
-
if image_array.shape[-1] != 4 or len(image_array.shape) != 3:
|
| 201 |
-
raise ValueError("Image must be in RGBA format")
|
| 202 |
-
|
| 203 |
-
reader = LSBReader(image_array)
|
| 204 |
-
magic = "stealth_pngcomp"
|
| 205 |
-
if reader.read_bytes(len(magic)).decode("utf-8", "replace") != magic:
|
| 206 |
-
raise ValueError("Invalid magic number (not NovelAI stealth payload)")
|
| 207 |
-
|
| 208 |
-
bit_len = reader.read_int32()
|
| 209 |
-
if bit_len is None or bit_len <= 0:
|
| 210 |
-
raise ValueError("Invalid payload length")
|
| 211 |
-
|
| 212 |
-
json_len = bit_len // 8
|
| 213 |
-
compressed_json = reader.read_bytes(json_len)
|
| 214 |
-
json_data = json.loads(gzip.decompress(bytes(compressed_json)).decode("utf-8"))
|
| 215 |
-
|
| 216 |
-
if "Comment" in json_data and isinstance(json_data["Comment"], str):
|
| 217 |
-
try:
|
| 218 |
-
json_data["Comment"] = json.loads(json_data["Comment"])
|
| 219 |
-
except Exception:
|
| 220 |
-
# Leave as-is if not valid JSON
|
| 221 |
-
pass
|
| 222 |
-
|
| 223 |
-
return json_data
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
def extract_nai_metadata(image: Union[Image.Image, str, Path]) -> dict:
|
| 227 |
-
if isinstance(image, (str, Path)):
|
| 228 |
-
image = Image.open(image)
|
| 229 |
-
elif not isinstance(image, Image.Image):
|
| 230 |
-
raise ValueError("Input must be a file path (string/Path) or a PIL Image")
|
| 231 |
-
return _extract_nai_metadata_from_image(image)
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
def extract_nai_caption_from_hf_img(hf_img: dict) -> Optional[str]:
|
| 235 |
-
image_bytes = hf_img['bytes']
|
| 236 |
-
pil_image = Image.open(BytesIO(image_bytes))
|
| 237 |
-
metadata = extract_nai_metadata(pil_image)
|
| 238 |
-
return metadata.get('Description')
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
def infer_nai(image: Optional[Image.Image]):
|
| 242 |
-
if image is None:
|
| 243 |
-
return None, {"error": "Please upload a PNG with alpha channel (RGBA)."}
|
| 244 |
-
try:
|
| 245 |
-
meta = extract_nai_metadata(image)
|
| 246 |
-
description = meta.get("Description")
|
| 247 |
-
return description, meta
|
| 248 |
-
except Exception as e:
|
| 249 |
-
return None, {"error": str(e)}
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
# =================================================
|
| 253 |
-
# =========== Similarity Metrics (tab 3) ===========
|
| 254 |
-
# =================================================
|
| 255 |
-
|
| 256 |
-
def _load_rgb_image(path: Union[str, Path]) -> np.ndarray:
|
| 257 |
-
"""Load an image file as RGB uint8 numpy array."""
|
| 258 |
-
img = Image.open(path).convert("RGB")
|
| 259 |
-
return np.array(img, dtype=np.uint8)
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
def _pixel_metrics(img_a: np.ndarray, img_b: np.ndarray) -> Dict[str, float]:
|
| 263 |
-
"""Compute basic pixel-wise similarity metrics between two RGB images."""
|
| 264 |
-
if img_a.shape != img_b.shape:
|
| 265 |
-
raise ValueError(f"Image size mismatch: {img_a.shape} vs {img_b.shape}")
|
| 266 |
-
|
| 267 |
-
diff = img_a.astype(np.float32) - img_b.astype(np.float32)
|
| 268 |
-
abs_diff = np.abs(diff)
|
| 269 |
-
|
| 270 |
-
mse = float(np.mean(diff ** 2))
|
| 271 |
-
mae = float(np.mean(abs_diff))
|
| 272 |
-
max_abs = float(np.max(abs_diff))
|
| 273 |
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
return {
|
| 283 |
-
"
|
| 284 |
-
"
|
| 285 |
-
"
|
| 286 |
-
"
|
| 287 |
-
"max_abs": max_abs,
|
| 288 |
-
"psnr": psnr,
|
| 289 |
}
|
| 290 |
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
f"Base image: {base_name}",
|
| 329 |
-
]
|
| 330 |
-
for name, vals in metrics.items():
|
| 331 |
-
lines.append(
|
| 332 |
-
(
|
| 333 |
-
f"{name}: pixel_diff_pct={vals['pixel_diff_pct']:.6f}%, "
|
| 334 |
-
f"pixel_match={vals['pixel_match']:.6f}, mse={vals['mse']:.6e}, "
|
| 335 |
-
f"mae={vals['mae']:.6e}, max_abs={vals['max_abs']:.6e}, "
|
| 336 |
-
f"psnr={vals['psnr']:.2f}dB"
|
| 337 |
-
)
|
| 338 |
)
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 376 |
files_in = gr.Files(
|
| 377 |
label="Image files",
|
| 378 |
# Explicit list ensures WebP acceptance across Gradio builds
|
|
@@ -383,10 +161,82 @@ with gr.Blocks(title="PNG Tools — ImageInfo & NovelAI Reader", theme=theme, an
|
|
| 383 |
type="filepath",
|
| 384 |
interactive=True,
|
| 385 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
with gr.Row():
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 390 |
|
| 391 |
if __name__ == "__main__":
|
| 392 |
-
demo.launch()
|
|
|
|
| 1 |
+
# annotate_concat_demo.py
|
| 2 |
+
# pip install -U gradio pillow
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
+
import os
|
| 5 |
+
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
from pathlib import Path
|
| 7 |
+
from typing import List, Tuple, Optional
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from PIL import Image, ImageOps
|
| 11 |
+
|
| 12 |
+
# Your existing implementations are assumed available:
|
| 13 |
+
from unibox.utils.image_utils import (
|
| 14 |
+
concatenate_images_horizontally,
|
| 15 |
+
add_annotation,
|
| 16 |
+
)
|
| 17 |
+
|
| 18 |
+
# ------------------------- helpers -------------------------
|
| 19 |
+
|
| 20 |
+
def _norm_path(f) -> Optional[str]:
|
| 21 |
+
if f is None:
|
| 22 |
+
return None
|
| 23 |
+
if isinstance(f, (str, Path)):
|
| 24 |
+
return str(f)
|
| 25 |
+
if hasattr(f, "name"):
|
| 26 |
+
return str(getattr(f, "name"))
|
| 27 |
+
if isinstance(f, dict):
|
| 28 |
+
return str(f.get("name") or f.get("path") or "")
|
| 29 |
+
return str(f)
|
| 30 |
+
|
| 31 |
+
def _load_images(files) -> List[Tuple[Image.Image, str]]:
|
| 32 |
+
out: List[Tuple[Image.Image, str]] = []
|
| 33 |
+
for f in (files or []):
|
| 34 |
+
p = _norm_path(f)
|
| 35 |
+
if not p:
|
| 36 |
+
continue
|
| 37 |
+
im = Image.open(p)
|
| 38 |
+
# auto-orient, ensure RGB; supports PNG/JPEG/WebP/GIF/BMP/TIFF…
|
| 39 |
+
im = ImageOps.exif_transpose(im).convert("RGB")
|
| 40 |
+
out.append((im, os.path.basename(p)))
|
| 41 |
+
return out
|
| 42 |
|
| 43 |
+
def _parse_descriptions(text: str, n: int):
|
| 44 |
+
lines = (text or "").splitlines()
|
| 45 |
+
if len(lines) > n:
|
| 46 |
+
return None, f"Too many description lines ({len(lines)}) for {n} image(s). Provide ≤ one per image."
|
| 47 |
+
lines = lines + [""] * (max(0, n - len(lines))) # pad with blanks
|
| 48 |
+
return lines[:n], None
|
| 49 |
+
|
| 50 |
+
def _build_stats(files, desc_text: str) -> dict:
|
| 51 |
+
pairs = _load_images(files)
|
| 52 |
+
n = len(pairs)
|
| 53 |
+
lines, err = _parse_descriptions(desc_text, n) if n > 0 else ((desc_text or "").splitlines(), None)
|
| 54 |
+
mapping = {}
|
| 55 |
+
for i, (_, fname) in enumerate(pairs):
|
| 56 |
+
mapping[fname] = (lines[i] if isinstance(lines, list) and i < len(lines) else "")
|
| 57 |
return {
|
| 58 |
+
"num_images": n,
|
| 59 |
+
"num_descriptions": len((desc_text or "").splitlines()),
|
| 60 |
+
"mapping": mapping,
|
| 61 |
+
**({"error": err} if err else {}),
|
|
|
|
|
|
|
| 62 |
}
|
| 63 |
|
| 64 |
+
# --------------------- core actions ------------------------
|
| 65 |
+
|
| 66 |
+
def concatenate_with_annotations(
|
| 67 |
+
files,
|
| 68 |
+
desc_text: str,
|
| 69 |
+
max_height: int,
|
| 70 |
+
position: str,
|
| 71 |
+
alignment: str,
|
| 72 |
+
size_adj: str,
|
| 73 |
+
):
|
| 74 |
+
logs = []
|
| 75 |
+
out_img = None
|
| 76 |
+
out_file = None
|
| 77 |
+
|
| 78 |
+
pairs = _load_images(files)
|
| 79 |
+
if not pairs:
|
| 80 |
+
logs.append("ERROR: Please upload at least one image.")
|
| 81 |
+
return out_img, out_file, "\n".join(logs), _build_stats(files, desc_text)
|
| 82 |
+
|
| 83 |
+
lines, err = _parse_descriptions(desc_text, len(pairs))
|
| 84 |
+
if err:
|
| 85 |
+
logs.append(f"ERROR: {err}")
|
| 86 |
+
return out_img, out_file, "\n".join(logs), _build_stats(files, desc_text)
|
| 87 |
+
|
| 88 |
+
# For left/right, alignment must be center (matches add_annotation behavior)
|
| 89 |
+
if position in ("left", "right"):
|
| 90 |
+
alignment = "center"
|
| 91 |
+
|
| 92 |
+
annotated = []
|
| 93 |
+
for (im, fname), line in zip(pairs, lines):
|
| 94 |
+
if line.strip():
|
| 95 |
+
im2 = add_annotation(
|
| 96 |
+
pil_image=im,
|
| 97 |
+
annotation=line,
|
| 98 |
+
position=position,
|
| 99 |
+
alignment=alignment,
|
| 100 |
+
size=size_adj,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
)
|
| 102 |
+
annotated.append(im2)
|
| 103 |
+
logs.append(f"Annotated: {fname}")
|
| 104 |
+
else:
|
| 105 |
+
annotated.append(im)
|
| 106 |
+
logs.append(f"Skipped (no description): {fname}")
|
| 107 |
+
|
| 108 |
+
started = time.time()
|
| 109 |
+
merged = concatenate_images_horizontally(annotated, max_height=max_height)
|
| 110 |
+
if merged is None:
|
| 111 |
+
logs.append("ERROR: Concatenation produced no result.")
|
| 112 |
+
return None, None, "\n".join(logs), _build_stats(files, desc_text)
|
| 113 |
+
|
| 114 |
+
# Save JPEG with required name
|
| 115 |
+
out_dir = Path("outputs")
|
| 116 |
+
out_dir.mkdir(parents=True, exist_ok=True)
|
| 117 |
+
stamp = time.strftime("%Y%m%d_%H%M%S")
|
| 118 |
+
out_name = f"concatenate_{stamp}.jpg"
|
| 119 |
+
out_path = out_dir / out_name
|
| 120 |
+
merged.save(str(out_path), format="JPEG", quality=95, optimize=True)
|
| 121 |
+
|
| 122 |
+
w, h = merged.size
|
| 123 |
+
size_bytes = out_path.stat().st_size
|
| 124 |
+
latency = time.time() - started
|
| 125 |
+
logs.append(f"Output: {out_name} — {w}×{h}px — {size_bytes} bytes — {latency:.3f}s")
|
| 126 |
+
|
| 127 |
+
return merged, str(out_path), "\n".join(logs), _build_stats(files, desc_text)
|
| 128 |
+
|
| 129 |
+
def check_stats_only(files, desc_text: str, *_):
|
| 130 |
+
stats = _build_stats(files, desc_text)
|
| 131 |
+
log = f"Images: {stats.get('num_images', 0)}; Description lines: {stats.get('num_descriptions', 0)}"
|
| 132 |
+
if "error" in stats:
|
| 133 |
+
log += f"\nERROR: {stats['error']}"
|
| 134 |
+
return None, None, log, stats
|
| 135 |
+
|
| 136 |
+
# ----------------------- UI wiring -------------------------
|
| 137 |
+
|
| 138 |
+
theme = gr.themes.Monochrome(primary_hue="slate", radius_size="sm")
|
| 139 |
+
|
| 140 |
+
with gr.Blocks(
|
| 141 |
+
title="Annotated Concatenation — Demo",
|
| 142 |
+
theme=theme,
|
| 143 |
+
analytics_enabled=False,
|
| 144 |
+
) as demo:
|
| 145 |
+
|
| 146 |
+
gr.Markdown("# Annotate & Concatenate Images")
|
| 147 |
+
gr.Markdown(
|
| 148 |
+
"Upload images (PNG/JPEG/WebP…), add one description per line (blank = skip), "
|
| 149 |
+
"and concatenate horizontally. The output JPEG is named `concatenate_{timestamp}.jpg`."
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
with gr.Row(variant="panel"):
|
| 153 |
+
with gr.Column(scale=2):
|
| 154 |
files_in = gr.Files(
|
| 155 |
label="Image files",
|
| 156 |
# Explicit list ensures WebP acceptance across Gradio builds
|
|
|
|
| 161 |
type="filepath",
|
| 162 |
interactive=True,
|
| 163 |
)
|
| 164 |
+
desc_in = gr.Textbox(
|
| 165 |
+
label="Descriptions (one per line; blank lines allowed to skip)",
|
| 166 |
+
placeholder="e.g.\nLeft image label\n\nRight image label",
|
| 167 |
+
lines=8,
|
| 168 |
+
)
|
| 169 |
+
max_h = gr.Number(
|
| 170 |
+
label="Max height (px) for concatenated image",
|
| 171 |
+
value=1024,
|
| 172 |
+
precision=0,
|
| 173 |
+
minimum=64,
|
| 174 |
+
interactive=True,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# Folded by default
|
| 178 |
+
with gr.Accordion("Annotation settings", open=False):
|
| 179 |
+
pos = gr.Dropdown(
|
| 180 |
+
label="Position",
|
| 181 |
+
choices=["top", "bottom", "left", "right"],
|
| 182 |
+
value="bottom",
|
| 183 |
+
)
|
| 184 |
+
align = gr.Radio(
|
| 185 |
+
label="Alignment (applies to top/bottom)",
|
| 186 |
+
choices=["left", "center", "right"],
|
| 187 |
+
value="center",
|
| 188 |
+
)
|
| 189 |
+
size_adj = gr.Radio(
|
| 190 |
+
label="Text size",
|
| 191 |
+
choices=["default", "larger", "smaller", "smallest", "largest"],
|
| 192 |
+
value="default",
|
| 193 |
+
)
|
| 194 |
+
|
| 195 |
+
def _toggle_align(p):
|
| 196 |
+
return gr.update(value="center", interactive=False) if p in ("left", "right") else gr.update(interactive=True)
|
| 197 |
+
|
| 198 |
+
pos.change(_toggle_align, inputs=[pos], outputs=[align])
|
| 199 |
+
|
| 200 |
with gr.Row():
|
| 201 |
+
concat_btn = gr.Button("Concatenate image", variant="primary")
|
| 202 |
+
stats_btn = gr.Button("Check stats")
|
| 203 |
+
|
| 204 |
+
with gr.Column(scale=3):
|
| 205 |
+
out_img = gr.Image(
|
| 206 |
+
label="Concatenated image (preview)",
|
| 207 |
+
interactive=False,
|
| 208 |
+
format="jpeg",
|
| 209 |
+
show_download_button=False,
|
| 210 |
+
)
|
| 211 |
+
download_file = gr.File(
|
| 212 |
+
label="Download JPEG (named as saved)",
|
| 213 |
+
interactive=False,
|
| 214 |
+
height=72, # compact
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
with gr.Accordion("Logs", open=False):
|
| 218 |
+
logs_out = gr.Textbox(
|
| 219 |
+
label="Info / Errors",
|
| 220 |
+
lines=10,
|
| 221 |
+
interactive=False,
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
with gr.Accordion("Stats", open=False):
|
| 225 |
+
stats_out = gr.JSON(label="Counts and current filename→description mapping")
|
| 226 |
+
|
| 227 |
+
concat_btn.click(
|
| 228 |
+
concatenate_with_annotations,
|
| 229 |
+
inputs=[files_in, desc_in, max_h, pos, align, size_adj],
|
| 230 |
+
outputs=[out_img, download_file, logs_out, stats_out],
|
| 231 |
+
api_name="concatenate",
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
stats_btn.click(
|
| 235 |
+
check_stats_only,
|
| 236 |
+
inputs=[files_in, desc_in, max_h, pos, align, size_adj],
|
| 237 |
+
outputs=[out_img, download_file, logs_out, stats_out],
|
| 238 |
+
api_name="check_stats",
|
| 239 |
+
)
|
| 240 |
|
| 241 |
if __name__ == "__main__":
|
| 242 |
+
demo.queue(max_size=8).launch()
|