Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import requests | |
| import pandas as pd | |
| st.set_page_config(page_title="SuperKart Sales Prediction", page_icon="π", layout="centered") | |
| st.title("π SuperKart Sales Prediction") | |
| # --- API base (set your HF Space URL here) --- | |
| # api_url = st.text_input( | |
| # "API Base URL", | |
| # value="https://vinodcwanted-SuperKart.hf.space", | |
| # help="Your Flask API base (no trailing slash). Example: https://thiresh-rentalpricepredictionbackend.hf.space", | |
| # ) | |
| api_url ="https://vinodcwanted-SuperKart.hf.space" | |
| st.markdown("### Product Details") | |
| col1, col2 = st.columns(2) | |
| with col1: | |
| product_weight = st.number_input("Product_Weight", min_value=0.0, value=12.5, step=0.1) | |
| product_alloc_area = st.number_input("Product_Allocated_Area", min_value=0.0, value=0.05, step=0.001, format="%.3f") | |
| product_mrp = st.number_input("Product_MRP", min_value=0.0, value=150.0, step=0.1) | |
| product_id = st.text_input("Product_Id (optional)", value="", help="If provided, API derives product_categories from its prefix (FD/NC/DR).") | |
| with col2: | |
| product_sugar_content = st.selectbox("Product_Sugar_Content", ["Low Sugar", "Regular", "No Sugar"]) | |
| product_type = st.selectbox( | |
| "Product_Type", | |
| [ | |
| "Frozen Foods","Dairy","Canned","Baking Goods","Health and Hygiene","Snack Foods","Meat", | |
| "Household","Hard Drinks","Fruits and Vegetables","Breads","Soft Drinks","Breakfast", | |
| "Others","Starchy Foods","Seafood" | |
| ], | |
| ) | |
| product_categories = st.selectbox( | |
| "product_categories", | |
| ["FD","NC","DR"], | |
| help="'FD':'Food_and_Vegetables','NC':'Non_Consumable','DR':'Drinks'" | |
| ) | |
| st.markdown("### Store Details") | |
| col3, col4 = st.columns(2) | |
| with col3: | |
| store_size = st.selectbox("Store_Size", ["Small", "Medium", "High"]) | |
| store_type = st.selectbox("Store_Type", ["Departmental Store", "Supermarket Type1", "Supermarket Type2", "Food Mart"]) | |
| with col4: | |
| store_city_type = st.selectbox("Store_Location_City_Type", ["Tier 1", "Tier 2", "Tier 3"]) | |
| store_est_year = st.number_input("Store_Establishment_Year", min_value=1900, max_value=2025, value=2005, step=1, | |
| help="API will compute Establishment_age = 2025 - this year.") | |
| # Build payload (single JSON) | |
| payload = { | |
| "Product_Weight": product_weight, | |
| "Product_Sugar_Content": product_sugar_content, | |
| "Product_Allocated_Area": product_alloc_area, | |
| "Product_Type": product_type, | |
| "Product_MRP": product_mrp, | |
| "Store_Establishment_Year": int(store_est_year), | |
| "Store_Size": store_size, | |
| "Store_Location_City_Type": store_city_type, | |
| "Store_Type": store_type, | |
| } | |
| # Optional fields | |
| if product_id.strip(): | |
| payload["Product_Id"] = product_id.strip() | |
| if product_categories != "(leave blank)": | |
| payload["product_categories"] = product_categories | |
| st.markdown("---") | |
| if st.button("Predict"): | |
| if not api_url.strip(): | |
| st.error("Please enter your API Base URL.") | |
| else: | |
| try: | |
| endpoint = api_url.rstrip("/") + "/v1/sale" | |
| with st.spinner("Contacting API..."): | |
| resp = requests.post(endpoint, json=payload, timeout=30) | |
| if resp.status_code == 200: | |
| data = resp.json() | |
| if "prediction" in data: | |
| st.success(f"Predicted Sales: **{data['prediction']}**") | |
| else: | |
| st.warning(f"API responded without 'prediction' key:\n{data}") | |
| else: | |
| st.error(f"API error {resp.status_code}: {resp.text}") | |
| except Exception as e: | |
| st.error(f"Request failed: {e}") | |
| with st.expander("Show request payload"): | |
| st.json(payload) | |