File size: 34,799 Bytes
cb4cbb0
bd9eb72
cb4cbb0
 
bd9eb72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb22190
 
 
 
 
 
 
bd9eb72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d09c83
bd9eb72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
# Copyright © 2025, Adobe Inc. and its licensors. All rights reserved.
#
# This file is licensed under the Adobe Research License. You may obtain a copy
# of the license at https://raw.githubusercontent.com/adobe-research/FaceLift/main/LICENSE.md

import math
import os

import cv2
import matplotlib
import numpy as np
import torch
from diff_gaussian_rasterization import (
    GaussianRasterizationSettings,
    GaussianRasterizer,
)
from einops import rearrange
from plyfile import PlyData, PlyElement
from torch import nn

from collections import OrderedDict
import videoio

@torch.no_grad()
def get_turntable_cameras(
    hfov=50,
    num_views=8,
    w=384,
    h=384,
    radius=2.7,
    elevation=20,
    up_vector=np.array([0, 0, 1]),
):
    fx = w / (2 * np.tan(np.deg2rad(hfov) / 2.0))
    fy = fx
    cx, cy = w / 2.0, h / 2.0
    fxfycxcy = (
        np.array([fx, fy, cx, cy]).reshape(1, 4).repeat(num_views, axis=0)
    )  # [num_views, 4]
    # azimuths = np.linspace(0, 360, num_views, endpoint=False)
    azimuths = np.linspace(270, 630, num_views, endpoint=False)
    elevations = np.ones_like(azimuths) * elevation
    c2ws = []
    for elev, azim in zip(elevations, azimuths):
        elev, azim = np.deg2rad(elev), np.deg2rad(azim)
        z = radius * np.sin(elev)
        base = radius * np.cos(elev)
        x = base * np.cos(azim)
        y = base * np.sin(azim)
        cam_pos = np.array([x, y, z])
        forward = -cam_pos / np.linalg.norm(cam_pos)
        right = np.cross(forward, up_vector)
        right = right / np.linalg.norm(right)
        up = np.cross(right, forward)
        up = up / np.linalg.norm(up)
        R = np.stack((right, -up, forward), axis=1)
        c2w = np.eye(4)
        c2w[:3, :4] = np.concatenate((R, cam_pos[:, None]), axis=1)
        c2ws.append(c2w)
    c2ws = np.stack(c2ws, axis=0)  # [num_views, 4, 4]
    return w, h, num_views, fxfycxcy, c2ws

def imageseq2video(images, filename, fps=24):
    # if images is uint8, convert to float32
    if images.dtype == np.uint8:
        images = images.astype(np.float32) / 255.0

    videoio.videosave(filename, images, lossless=True, preset="veryfast", fps=fps)


# copied from: utils.general_utils
def strip_lowerdiag(L):
    uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device=L.device)

    uncertainty[:, 0] = L[:, 0, 0]
    uncertainty[:, 1] = L[:, 0, 1]
    uncertainty[:, 2] = L[:, 0, 2]
    uncertainty[:, 3] = L[:, 1, 1]
    uncertainty[:, 4] = L[:, 1, 2]
    uncertainty[:, 5] = L[:, 2, 2]
    return uncertainty


def strip_symmetric(sym):
    return strip_lowerdiag(sym)


def build_rotation(r):
    norm = torch.sqrt(
        r[:, 0] * r[:, 0] + r[:, 1] * r[:, 1] + r[:, 2] * r[:, 2] + r[:, 3] * r[:, 3]
    )

    q = r / norm[:, None]

    R = torch.zeros((q.size(0), 3, 3), device=r.device)

    r = q[:, 0]
    x = q[:, 1]
    y = q[:, 2]
    z = q[:, 3]

    R[:, 0, 0] = 1 - 2 * (y * y + z * z)
    R[:, 0, 1] = 2 * (x * y - r * z)
    R[:, 0, 2] = 2 * (x * z + r * y)
    R[:, 1, 0] = 2 * (x * y + r * z)
    R[:, 1, 1] = 1 - 2 * (x * x + z * z)
    R[:, 1, 2] = 2 * (y * z - r * x)
    R[:, 2, 0] = 2 * (x * z - r * y)
    R[:, 2, 1] = 2 * (y * z + r * x)
    R[:, 2, 2] = 1 - 2 * (x * x + y * y)
    return R


def build_scaling_rotation(s, r):
    L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device=s.device)
    R = build_rotation(r)

    L[:, 0, 0] = s[:, 0]
    L[:, 1, 1] = s[:, 1]
    L[:, 2, 2] = s[:, 2]

    L = R @ L
    return L


def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
    L = build_scaling_rotation(scaling_modifier * scaling, rotation)
    actual_covariance = L @ L.transpose(1, 2)
    symm = strip_symmetric(actual_covariance)
    return symm


# copied from: utils.sh_utils
C0 = 0.28209479177387814
C1 = 0.4886025119029199
C2 = [
    1.0925484305920792,
    -1.0925484305920792,
    0.31539156525252005,
    -1.0925484305920792,
    0.5462742152960396,
]
C3 = [
    -0.5900435899266435,
    2.890611442640554,
    -0.4570457994644658,
    0.3731763325901154,
    -0.4570457994644658,
    1.445305721320277,
    -0.5900435899266435,
]
C4 = [
    2.5033429417967046,
    -1.7701307697799304,
    0.9461746957575601,
    -0.6690465435572892,
    0.10578554691520431,
    -0.6690465435572892,
    0.47308734787878004,
    -1.7701307697799304,
    0.6258357354491761,
]


def eval_sh(deg, sh, dirs):
    """
    Evaluate spherical harmonics at unit directions
    using hardcoded SH polynomials.
    Works with torch/np/jnp.
    ... Can be 0 or more batch dimensions.
    Args:
        deg: int SH deg. Currently, 0-3 supported
        sh: jnp.ndarray SH coeffs [..., C, (deg + 1) ** 2]
        dirs: jnp.ndarray unit directions [..., 3]
    Returns:
        [..., C]
    """
    assert deg <= 4 and deg >= 0
    coeff = (deg + 1) ** 2
    assert sh.shape[-1] >= coeff

    result = C0 * sh[..., 0]
    if deg > 0:
        x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
        result = (
            result - C1 * y * sh[..., 1] + C1 * z * sh[..., 2] - C1 * x * sh[..., 3]
        )

        if deg > 1:
            xx, yy, zz = x * x, y * y, z * z
            xy, yz, xz = x * y, y * z, x * z
            result = (
                result
                + C2[0] * xy * sh[..., 4]
                + C2[1] * yz * sh[..., 5]
                + C2[2] * (2.0 * zz - xx - yy) * sh[..., 6]
                + C2[3] * xz * sh[..., 7]
                + C2[4] * (xx - yy) * sh[..., 8]
            )

            if deg > 2:
                result = (
                    result
                    + C3[0] * y * (3 * xx - yy) * sh[..., 9]
                    + C3[1] * xy * z * sh[..., 10]
                    + C3[2] * y * (4 * zz - xx - yy) * sh[..., 11]
                    + C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12]
                    + C3[4] * x * (4 * zz - xx - yy) * sh[..., 13]
                    + C3[5] * z * (xx - yy) * sh[..., 14]
                    + C3[6] * x * (xx - 3 * yy) * sh[..., 15]
                )

                if deg > 3:
                    result = (
                        result
                        + C4[0] * xy * (xx - yy) * sh[..., 16]
                        + C4[1] * yz * (3 * xx - yy) * sh[..., 17]
                        + C4[2] * xy * (7 * zz - 1) * sh[..., 18]
                        + C4[3] * yz * (7 * zz - 3) * sh[..., 19]
                        + C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20]
                        + C4[5] * xz * (7 * zz - 3) * sh[..., 21]
                        + C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22]
                        + C4[7] * xz * (xx - 3 * yy) * sh[..., 23]
                        + C4[8]
                        * (xx * (xx - 3 * yy) - yy * (3 * xx - yy))
                        * sh[..., 24]
                    )
    return result


def RGB2SH(rgb):
    return (rgb - 0.5) / C0


def SH2RGB(sh):
    return sh * C0 + 0.5


def create_video(image_folder, output_video_file, framerate=30):
    # Get all image file paths to a list.
    images = [img for img in os.listdir(image_folder) if img.endswith(".png")]
    images.sort()

    # Read the first image to know the height and width
    frame = cv2.imread(os.path.join(image_folder, images[0]))
    height, width, layers = frame.shape

    video = cv2.VideoWriter(
        output_video_file, cv2.VideoWriter_fourcc(*"mp4v"), framerate, (width, height)
    )

    # iterate over each image and add it to the video sequence
    for image in images:
        video.write(cv2.imread(os.path.join(image_folder, image)))

    cv2.destroyAllWindows()
    video.release()


class Camera(nn.Module):
    def __init__(self, C2W, fxfycxcy, h, w):
        """
        C2W: 4x4 camera-to-world matrix; opencv convention
        fxfycxcy: 4
        """
        super().__init__()
        self.C2W = C2W.clone().float()
        self.W2C = self.C2W.inverse()
        self.h = h
        self.w = w

        self.znear = 0.01
        self.zfar = 100.0

        fx, fy, cx, cy = fxfycxcy[0], fxfycxcy[1], fxfycxcy[2], fxfycxcy[3]
        self.tanfovX = w / (2 * fx)
        self.tanfovY = h / (2 * fy)

        def getProjectionMatrix(W, H, fx, fy, cx, cy, znear, zfar):
            P = torch.zeros(4, 4, device=fx.device)
            P[0, 0] = 2 * fx / W
            P[1, 1] = 2 * fy / H
            P[0, 2] = 2 * (cx / W) - 1
            P[1, 2] = 2 * (cy / H) - 1
            P[2, 2] = -(zfar + znear) / (zfar - znear)
            P[3, 2] = 1.0
            P[2, 3] = -(2 * zfar * znear) / (zfar - znear)
            return P

        self.world_view_transform = self.W2C.transpose(0, 1)
        self.projection_matrix = getProjectionMatrix(
            self.w, self.h, fx, fy, cx, cy, self.znear, self.zfar
        ).transpose(0, 1)
        self.full_proj_transform = (
            self.world_view_transform.unsqueeze(0).bmm(
                self.projection_matrix.unsqueeze(0)
            )
        ).squeeze(0)
        self.camera_center = self.C2W[:3, 3]


# modified from scene/gaussian_model.py
class GaussianModel:
    def setup_functions(self):
        self.scaling_activation = torch.exp
        self.inv_scaling_activation = torch.log
        self.rotation_activation = torch.nn.functional.normalize
        self.opacity_activation = torch.sigmoid
        self.covariance_activation = build_covariance_from_scaling_rotation

    def __init__(self, sh_degree: int, scaling_modifier=None):
        self.sh_degree = sh_degree
        self._xyz = torch.empty(0)
        self._features_dc = torch.empty(0)
        if self.sh_degree > 0:
            self._features_rest = torch.empty(0)
        else:
            self._features_rest = None
        self._scaling = torch.empty(0)
        self._rotation = torch.empty(0)
        self._opacity = torch.empty(0)
        self.setup_functions()

        self.scaling_modifier = scaling_modifier

    def empty(self):
        self.__init__(self.sh_degree, self.scaling_modifier)

    def set_data(self, xyz, features, scaling, rotation, opacity):
        """
        xyz : torch.tensor of shape (N, 3)
        features : torch.tensor of shape (N, (self.sh_degree + 1) ** 2, 3)
        scaling : torch.tensor of shape (N, 3)
        rotation : torch.tensor of shape (N, 4)
        opacity : torch.tensor of shape (N, 1)
        """
        self._xyz = xyz
        self._features_dc = features[:, :1, :].contiguous()
        if self.sh_degree > 0:
            self._features_rest = features[:, 1:, :].contiguous()
        else:
            self._features_rest = None
        self._scaling = scaling
        self._rotation = rotation
        self._opacity = opacity
        return self

    def to(self, device):
        self._xyz = self._xyz.to(device)
        self._features_dc = self._features_dc.to(device)
        if self.sh_degree > 0:
            self._features_rest = self._features_rest.to(device)
        self._scaling = self._scaling.to(device)
        self._rotation = self._rotation.to(device)
        self._opacity = self._opacity.to(device)
        return self

    def filter(self, valid_mask):
        self._xyz = self._xyz[valid_mask]
        self._features_dc = self._features_dc[valid_mask]
        if self.sh_degree > 0:
            self._features_rest = self._features_rest[valid_mask]
        self._scaling = self._scaling[valid_mask]
        self._rotation = self._rotation[valid_mask]
        self._opacity = self._opacity[valid_mask]
        return self

    def crop(self, crop_bbx=[-1, 1, -1, 1, -1, 1]):
        x_min, x_max, y_min, y_max, z_min, z_max = crop_bbx
        xyz = self._xyz
        invalid_mask = (
            (xyz[:, 0] < x_min)
            | (xyz[:, 0] > x_max)
            | (xyz[:, 1] < y_min)
            | (xyz[:, 1] > y_max)
            | (xyz[:, 2] < z_min)
            | (xyz[:, 2] > z_max)
        )
        valid_mask = ~invalid_mask

        return self.filter(valid_mask)

    def crop_by_xyz(self, floater_thres=0.75):
        xyz = self._xyz
        invalid_mask = (
            (((xyz[:, 0] < -floater_thres) & (xyz[:, 1] < -floater_thres))
            | ((xyz[:, 0] < -floater_thres) & (xyz[:, 1] > floater_thres))
            | ((xyz[:, 0] > floater_thres) & (xyz[:, 1] < -floater_thres))
            | ((xyz[:, 0] > floater_thres) & (xyz[:, 1] > floater_thres)))
            & (xyz[:, 2] < -floater_thres)
        )
        valid_mask = ~invalid_mask

        return self.filter(valid_mask)

    def prune(self, opacity_thres=0.05):
        opacity = self.get_opacity.squeeze(1)
        valid_mask = opacity > opacity_thres

        return self.filter(valid_mask)
    
    def prune_by_scaling(self, scaling_thres=0.1):
        scaling = self.get_scaling
        valid_mask = scaling.max(dim=1).values < scaling_thres
        position_mask = self._xyz[:, 2] > 0

        valid_mask = valid_mask | position_mask

        return self.filter(valid_mask)

    def prune_by_nearfar(self, cam_origins, nearfar_percent=(0.01, 0.99)):
        # cam_origins: [num_cams, 3]
        # nearfar_percent: [near, far]
        assert len(nearfar_percent) == 2
        assert nearfar_percent[0] < nearfar_percent[1]
        assert nearfar_percent[0] >= 0 and nearfar_percent[1] <= 1

        device = self._xyz.device
        # compute distance of all points to all cameras
        # [num_points, num_cams]
        dists = torch.cdist(self._xyz[None], cam_origins[None].to(device))[0]
        # [2, num_cams]
        dists_percentile = torch.quantile(
            dists, torch.tensor(nearfar_percent).to(device), dim=0
        )
        # prune all points that are outside the percentile range
        # [num_points, num_cams]
        # goal: prune points that are too close or too far from any camera
        reject_mask = (dists < dists_percentile[0:1, :]) | (
            dists > dists_percentile[1:2, :]
        )
        reject_mask = reject_mask.any(dim=1)
        valid_mask = ~reject_mask

        return self.filter(valid_mask)

    def apply_all_filters(
        self,
        opacity_thres=0.05,
        scaling_thres=None,
        floater_thres=None,
        crop_bbx=[-1, 1, -1, 1, -1, 1],
        cam_origins=None,
        nearfar_percent=(0.005, 1.0),
    ):
        self.prune(opacity_thres)
        if scaling_thres is not None:
            self.prune_by_scaling(scaling_thres)
        if floater_thres is not None:
            self.crop_by_xyz(floater_thres)
        if crop_bbx is not None:
            self.crop(crop_bbx)
        if cam_origins is not None:
            self.prune_by_nearfar(cam_origins, nearfar_percent)
        return self

    def shrink_bbx(self, drop_ratio=0.05):
        xyz = self._xyz
        xyz_min, xyz_max = torch.quantile(
            xyz,
            torch.tensor([drop_ratio, 1 - drop_ratio]).float().to(xyz.device),
            dim=0,
        )  # [2, N]
        xyz_min = xyz_min.detach().cpu().numpy()
        xyz_max = xyz_max.detach().cpu().numpy()
        crop_bbx = [
            xyz_min[0],
            xyz_max[0],
            xyz_min[1],
            xyz_max[1],
            xyz_min[2],
            xyz_max[2],
        ]
        print(f"Shrinking bbx to {crop_bbx}")
        return self.crop(crop_bbx)

    def report_stats(self):
        print(
            f"xyz: {self._xyz.shape}, {self._xyz.min().item()}, {self._xyz.max().item()}"
        )
        print(
            f"features_dc: {self._features_dc.shape}, {self._features_dc.min().item()}, {self._features_dc.max().item()}"
        )
        if self.sh_degree > 0:
            print(
                f"features_rest: {self._features_rest.shape}, {self._features_rest.min().item()}, {self._features_rest.max().item()}"
            )
        print(
            f"scaling: {self._scaling.shape}, {self._scaling.min().item()}, {self._scaling.max().item()}"
        )
        print(
            f"rotation: {self._rotation.shape}, {self._rotation.min().item()}, {self._rotation.max().item()}"
        )
        print(
            f"opacity: {self._opacity.shape}, {self._opacity.min().item()}, {self._opacity.max().item()}"
        )

        print(
            f"after activation, xyz: {self.get_xyz.shape}, {self.get_xyz.min().item()}, {self.get_xyz.max().item()}"
        )
        print(
            f"after activation, features: {self.get_features.shape}, {self.get_features.min().item()}, {self.get_features.max().item()}"
        )
        print(
            f"after activation, scaling: {self.get_scaling.shape}, {self.get_scaling.min().item()}, {self.get_scaling.max().item()}"
        )
        print(
            f"after activation, rotation: {self.get_rotation.shape}, {self.get_rotation.min().item()}, {self.get_rotation.max().item()}"
        )
        print(
            f"after activation, opacity: {self.get_opacity.shape}, {self.get_opacity.min().item()}, {self.get_opacity.max().item()}"
        )
        print(
            f"after activation, covariance: {self.get_covariance().shape}, {self.get_covariance().min().item()}, {self.get_covariance().max().item()}"
        )

    @property
    def get_scaling(self):
        if self.scaling_modifier is not None:
            return self.scaling_activation(self._scaling) * self.scaling_modifier
        else:
            return self.scaling_activation(self._scaling)

    @property
    def get_rotation(self):
        return self.rotation_activation(self._rotation)

    @property
    def get_xyz(self):
        return self._xyz

    @property
    def get_features(self):
        if self.sh_degree > 0:
            features_dc = self._features_dc
            features_rest = self._features_rest
            return torch.cat((features_dc, features_rest), dim=1)
        else:
            return self._features_dc

    @property
    def get_opacity(self):
        return self.opacity_activation(self._opacity)

    def get_covariance(self, scaling_modifier=1):
        return self.covariance_activation(
            self.get_scaling, scaling_modifier, self._rotation
        )

    def construct_dtypes(self, use_fp16=False, enable_gs_viewer=True):
        if not use_fp16:
            l = [
                ("x", "f4"),
                ("y", "f4"),
                ("z", "f4"),
                ("red", "u1"),
                ("green", "u1"),
                ("blue", "u1"),
            ]
            # All channels except the 3 DC
            for i in range(self._features_dc.shape[1] * self._features_dc.shape[2]):
                l.append((f"f_dc_{i}", "f4"))

            if enable_gs_viewer:
                assert self.sh_degree <= 3, "GS viewer only supports SH up to degree 3"
                sh_degree = 3
                for i in range(((sh_degree + 1) ** 2 - 1) * 3):
                    l.append((f"f_rest_{i}", "f4"))
            else:
                if self.sh_degree > 0:
                    for i in range(
                        self._features_rest.shape[1] * self._features_rest.shape[2]
                    ):
                        l.append((f"f_rest_{i}", "f4"))

            l.append(("opacity", "f4"))
            for i in range(self._scaling.shape[1]):
                l.append((f"scale_{i}", "f4"))
            for i in range(self._rotation.shape[1]):
                l.append((f"rot_{i}", "f4"))
        else:
            l = [
                ("x", "f2"),
                ("y", "f2"),
                ("z", "f2"),
                ("red", "u1"),
                ("green", "u1"),
                ("blue", "u1"),
            ]
            # All channels except the 3 DC
            for i in range(self._features_dc.shape[1] * self._features_dc.shape[2]):
                l.append((f"f_dc_{i}", "f2"))

            if self.sh_degree > 0:
                for i in range(
                    self._features_rest.shape[1] * self._features_rest.shape[2]
                ):
                    l.append((f"f_rest_{i}", "f2"))
            l.append(("opacity", "f2"))
            for i in range(self._scaling.shape[1]):
                l.append((f"scale_{i}", "f2"))
            for i in range(self._rotation.shape[1]):
                l.append((f"rot_{i}", "f2"))
        return l

    def save_ply(
        self,
        path,
        use_fp16=False,
        enable_gs_viewer=True,
        color_code=False,
        filter_mask=None,
    ):
        os.makedirs(os.path.dirname(path), exist_ok=True)

        xyz = self._xyz.detach().cpu().numpy()
        f_dc = (
            self._features_dc.detach()
            .transpose(1, 2)
            .flatten(start_dim=1)
            .contiguous()
            .cpu()
            .numpy()
        )
        if not color_code:
            rgb = (SH2RGB(f_dc) * 255.0).clip(0.0, 255.0).astype(np.uint8)
        else:
            # use an color map to color code the index of points
            index = np.linspace(0, 1, xyz.shape[0])
            rgb = matplotlib.colormaps["viridis"](index)[..., :3]
            rgb = (rgb * 255.0).clip(0.0, 255.0).astype(np.uint8)

        opacities = self._opacity.detach().cpu().numpy()
        if self.scaling_modifier is not None:
            scale = self.inv_scaling_activation(self.get_scaling).detach().cpu().numpy()
        else:
            scale = self._scaling.detach().cpu().numpy()
        rotation = self._rotation.detach().cpu().numpy()

        dtype_full = self.construct_dtypes(use_fp16, enable_gs_viewer)
        elements = np.empty(xyz.shape[0], dtype=dtype_full)

        f_rest = None
        if self.sh_degree > 0:
            f_rest = (
                self._features_rest.detach()
                .transpose(1, 2)
                .flatten(start_dim=1)
                .contiguous()
                .cpu()
                .numpy()
            )  # (3, (self.sh_degree + 1) ** 2 - 1)

        if enable_gs_viewer:
            sh_degree = 3
            if f_rest is None:
                f_rest = np.zeros(
                    (xyz.shape[0], 3 * ((sh_degree + 1) ** 2 - 1)), dtype=np.float32
                )
            elif f_rest.shape[1] < 3 * ((sh_degree + 1) ** 2 - 1):
                f_rest_pad = np.zeros(
                    (xyz.shape[0], 3 * ((sh_degree + 1) ** 2 - 1)), dtype=np.float32
                )
                f_rest_pad[:, : f_rest.shape[1]] = f_rest
                f_rest = f_rest_pad

        if f_rest is not None:
            attributes = np.concatenate(
                (xyz, rgb, f_dc, f_rest, opacities, scale, rotation), axis=1
            )
        else:
            attributes = np.concatenate(
                (xyz, rgb, f_dc, opacities, scale, rotation), axis=1
            )

        if filter_mask is not None:
            attributes = attributes[filter_mask]
            elements = elements[filter_mask]

        elements[:] = list(map(tuple, attributes))
        el = PlyElement.describe(elements, "vertex")
        PlyData([el]).write(path)

    def load_ply(self, path):
        plydata = PlyData.read(path)

        xyz = np.stack(
            (
                np.asarray(plydata.elements[0]["x"]),
                np.asarray(plydata.elements[0]["y"]),
                np.asarray(plydata.elements[0]["z"]),
            ),
            axis=1,
        )
        opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]

        features_dc = np.zeros((xyz.shape[0], 3, 1))
        features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
        features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
        features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])

        if self.sh_degree > 0:
            extra_f_names = [
                p.name
                for p in plydata.elements[0].properties
                if p.name.startswith("f_rest_")
            ]
            extra_f_names = sorted(extra_f_names, key=lambda x: int(x.split("_")[-1]))
            assert len(extra_f_names) == 3 * (self.sh_degree + 1) ** 2 - 3
            features_extra = np.zeros((xyz.shape[0], len(extra_f_names)))
            for idx, attr_name in enumerate(extra_f_names):
                features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name])
            # Reshape (P,F*SH_coeffs) to (P, F, SH_coeffs except DC)
            features_extra = features_extra.reshape(
                (features_extra.shape[0], 3, (self.sh_degree + 1) ** 2 - 1)
            )

        scale_names = [
            p.name
            for p in plydata.elements[0].properties
            if p.name.startswith("scale_")
        ]
        scale_names = sorted(scale_names, key=lambda x: int(x.split("_")[-1]))
        scales = np.zeros((xyz.shape[0], len(scale_names)))
        for idx, attr_name in enumerate(scale_names):
            scales[:, idx] = np.asarray(plydata.elements[0][attr_name])

        rot_names = [
            p.name for p in plydata.elements[0].properties if p.name.startswith("rot")
        ]
        rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
        rots = np.zeros((xyz.shape[0], len(rot_names)))
        for idx, attr_name in enumerate(rot_names):
            rots[:, idx] = np.asarray(plydata.elements[0][attr_name])

        self._xyz = torch.from_numpy(xyz.astype(np.float32))
        self._features_dc = (
            torch.from_numpy(features_dc.astype(np.float32))
            .transpose(1, 2)
            .contiguous()
        )
        if self.sh_degree > 0:
            self._features_rest = (
                torch.from_numpy(features_extra.astype(np.float32))
                .transpose(1, 2)
                .contiguous()
            )
        self._opacity = torch.from_numpy(
            np.copy(opacities).astype(np.float32)
        ).contiguous()
        self._scaling = torch.from_numpy(scales.astype(np.float32)).contiguous()
        self._rotation = torch.from_numpy(rots.astype(np.float32)).contiguous()


def render_opencv_cam(
    pc: GaussianModel,
    height: int,
    width: int,
    C2W: torch.Tensor,
    fxfycxcy: torch.Tensor,
    bg_color=(1.0, 1.0, 1.0),
    scaling_modifier=1.0,
):
    """
    Render the scene.

    Background tensor (bg_color) must be on GPU!
    """
    # Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
    screenspace_points = torch.empty_like(
        pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda"
    )
    # try:
    #     screenspace_points.retain_grad()
    # except:
    #     pass

    viewpoint_camera = Camera(C2W=C2W, fxfycxcy=fxfycxcy, h=height, w=width)

    bg_color = torch.tensor(list(bg_color), dtype=torch.float32, device=C2W.device)

    # Set up rasterization configuration
    raster_settings = GaussianRasterizationSettings(
        image_height=int(viewpoint_camera.h),
        image_width=int(viewpoint_camera.w),
        tanfovx=viewpoint_camera.tanfovX,
        tanfovy=viewpoint_camera.tanfovY,
        bg=bg_color,
        scale_modifier=scaling_modifier,
        viewmatrix=viewpoint_camera.world_view_transform,
        projmatrix=viewpoint_camera.full_proj_transform,
        sh_degree=pc.sh_degree,
        campos=viewpoint_camera.camera_center,
        prefiltered=False,
        debug=False,
    )

    rasterizer = GaussianRasterizer(raster_settings=raster_settings)

    means3D = pc.get_xyz
    means2D = screenspace_points
    opacity = pc.get_opacity
    scales = pc.get_scaling
    rotations = pc.get_rotation
    shs = pc.get_features

    # Rasterize visible Gaussians to image, obtain their radii (on screen).
    rendered_image, radii = rasterizer(
        means3D=means3D,
        means2D=means2D,
        shs=shs,
        colors_precomp=None,
        opacities=opacity,
        scales=scales,
        rotations=rotations,
        cov3D_precomp=None,
    )

    # Those Gaussians that were frustum culled or had a radius of 0 were not visible.
    # They will be excluded from value updates used in the splitting criteria.
    return {
        "render": rendered_image,
        "viewspace_points": screenspace_points,
        "visibility_filter": radii > 0,
        "radii": radii,
    }


class DeferredGaussianRender(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx,
        xyz,
        features,
        scaling,
        rotation,
        opacity,
        height,
        width,
        C2W,
        fxfycxcy,
        scaling_modifier=None,
    ):
        """
        xyz: [b, n_gaussians, 3]
        features: [b, n_gaussians, (sh_degree+1)^2, 3]
        scaling: [b, n_gaussians, 3]
        rotation: [b, n_gaussians, 4]
        opacity: [b, n_gaussians, 1]

        height: int
        width: int
        C2W: [b, v, 4, 4]
        fxfycxcy: [b, v, 4]

        output: [b, v, 3, height, width]
        """
        ctx.scaling_modifier = scaling_modifier

        # Infer sh_degree from features
        sh_degree = int(math.sqrt(features.shape[-2])) - 1

        # Create a temp class to hold the data and for rendering
        gaussians_model = GaussianModel(sh_degree, scaling_modifier)

        with torch.no_grad():
            b, v = C2W.size(0), C2W.size(1)
            renders = []
            for i in range(b):
                pc = gaussians_model.set_data(
                    xyz[i], features[i], scaling[i], rotation[i], opacity[i]
                )
                for j in range(v):
                    renders.append(
                        render_opencv_cam(pc, height, width, C2W[i, j], fxfycxcy[i, j])[
                            "render"
                        ]
                    )
            renders = torch.stack(renders, dim=0)
            renders = renders.reshape(b, v, 3, height, width)

        renders = renders.requires_grad_()

        # Save_for_backward only supports tensors
        ctx.save_for_backward(xyz, features, scaling, rotation, opacity, C2W, fxfycxcy)
        ctx.rendering_size = (height, width)
        ctx.sh_degree = sh_degree

        # Release the temp class; do not save it.
        del gaussians_model

        return renders

    @staticmethod
    def backward(ctx, grad_output):
        # Restore params
        xyz, features, scaling, rotation, opacity, C2W, fxfycxcy = ctx.saved_tensors
        height, width = ctx.rendering_size
        sh_degree = ctx.sh_degree

        # **The order of this dict should not be changed**
        input_dict = OrderedDict(
            [
                ("xyz", xyz),
                ("features", features),
                ("scaling", scaling),
                ("rotation", rotation),
                ("opacity", opacity),
            ]
        )
        input_dict = {k: v.detach().requires_grad_() for k, v in input_dict.items()}

        # Create a temp class to hold the data and for rendering
        gaussians_model = GaussianModel(sh_degree, ctx.scaling_modifier)

        with torch.enable_grad():
            b, v = C2W.size(0), C2W.size(1)
            for i in range(b):
                for j in range(v):
                    # The backward will remove the diff graph, thus each time we need a copy
                    pc = gaussians_model.set_data(
                        **{k: v[i] for k, v in input_dict.items()}
                    )

                    # Forward
                    render = render_opencv_cam(
                        pc, height, width, C2W[i, j], fxfycxcy[i, j]
                    )["render"]

                    # Backward, suppose that only values in input_dict will get gradients.
                    render.backward(grad_output[i, j])

        del gaussians_model

        return *[var.grad for var in input_dict.values()], None, None, None, None, None


# Function for the class
deferred_gaussian_render = DeferredGaussianRender.apply

@torch.no_grad()
@torch.cuda.amp.custom_fwd(cast_inputs=torch.float32)
def render_turntable(pc: GaussianModel, rendering_resolution=384, num_views=8):
    w, h, v, fxfycxcy, c2w = get_turntable_cameras(
        h=rendering_resolution, w=rendering_resolution, num_views=num_views,
        elevation=0,  # For MAX SNEAK
    )

    device = pc._xyz.device
    fxfycxcy = torch.from_numpy(fxfycxcy).float().to(device)  # [v, 4]
    c2w = torch.from_numpy(c2w).float().to(device)  # [v, 4, 4]

    renderings = torch.zeros(v, 3, h, w, dtype=torch.float32, device=device)
    for j in range(v):
        renderings[j] = render_opencv_cam(pc, h, w, c2w[j], fxfycxcy[j])["render"]
    torch.cuda.empty_cache()  # free up memory on GPU
    renderings = renderings.detach().cpu().numpy()
    renderings = (renderings * 255).clip(0, 255).astype(np.uint8)
    renderings = rearrange(renderings, "v c h w -> h (v w) c")
    return renderings


if __name__ == "__main__":
    import json

    from PIL import Image
    from tqdm import tqdm

    out_dir = "/mnt/localssd/debug-3dgs"
    os.makedirs(out_dir, exist_ok=True)

    os.system(
        f"wget https://phidias.s3.us-west-2.amazonaws.com/kaiz/neural-capture/eval-3dgs-lowres/AWS_test_set/results/1.fashion_boots_rubber_boots__short__Feb_21__2023_at_5_19_25_PM_yf/point_cloud/iteration_30000_fg/point_cloud.ply -O {out_dir}/point_cloud.ply"
    )
    os.system(
        f"wget https://neural-capture.s3.us-west-2.amazonaws.com/data/AWS_test_set/preprocessed/1.fashion_boots_rubber_boots__short__Feb_21__2023_at_5_19_25_PM_yf/opencv_cameras_traj_norm.json -O {out_dir}/opencv_cameras_traj_norm.json"
    )

    device = "cuda:0"

    pc = GaussianModel(sh_degree=3)
    pc.load_ply(f"{out_dir}/point_cloud.ply")
    pc = pc.to(device)

    # pc.save_ply(f"{out_dir}/point_cloud_shrink.ply")
    # pc.load_ply(f"{out_dir}/point_cloud_shrink.ply")
    # pc = pc.to(device)

    # pc.prune(opacity_thres=0.05)
    # pc.save_ply(f"{out_dir}/point_cloud_shrink_prune.ply")
    # pc = pc.to(device)

    # pc.shrink_bbx(drop_ratio=0.01)
    # pc.save_ply(f"{out_dir}/point_cloud_shrink_prune.ply")
    # pc = pc.to(device)

    pc.report_stats()

    with open(f"{out_dir}/opencv_cameras_traj_norm.json", "r") as f:
        cam_traj = json.load(f)

    for i, cam in tqdm(enumerate(cam_traj["frames"]), desc="Rendering progress"):
        w2c = np.array(cam["w2c"])
        c2w = np.linalg.inv(w2c)
        c2w = torch.from_numpy(c2w.astype(np.float32)).to(device)

        fx = cam["fx"]
        fy = cam["fy"]
        cx = cam["cx"]
        cy = cam["cy"]
        cx = cx - 5
        cy = cy + 4
        fxfycxcy = torch.tensor([fx, fy, cx, cy], dtype=torch.float32, device=device)

        h = cam["h"]
        w = cam["w"]

        im = render_opencv_cam(pc, h, w, c2w, fxfycxcy, bg_color=[0.0, 0.0, 0.0])[
            "render"
        ]
        im = im.detach().cpu().numpy().transpose(1, 2, 0)
        im = (im * 255).astype(np.uint8)
        Image.fromarray(im).save(f"{out_dir}/render_{i:08d}.png")

    create_video(out_dir, f"{out_dir}/render.mp4", framerate=30)
    print(f"Saved {out_dir}/render.mp4")