# Model: LLaMA (IFD Top 30%) ## ๐Ÿ” Purpose Fine-tune `meta-llama/Llama-3.2-1B` on instruction samples with the **highest Instruction Flow Density (IFD)**. This group includes samples where the instruction contributes **least** to the modelโ€™s output (i.e., high IFD). ## ๐Ÿ“‚ Dataset - `alpaca2000.csv` - IFD score ์ƒ์œ„ 30% (2000๊ฐœ ์ค‘ 600๊ฐœ) - ๊ธฐ์ค€: `PPL(y | x) / PPL(y)` (x: instruction+input, y: output) ## โš™๏ธ Training Config - Model: `meta-llama/Llama-3.2-1B` - Precision: `bf16` or `float32` - Epochs: 3 - Max length: 2048 - Output: `output/llama_ifd` ## ๐Ÿงช Goal Establish baseline performance of high-IFD samples, before splitting by instruction entropy.