initial commit
Browse files- README.md +33 -0
- config.json +43 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +16 -0
- vocab.txt +0 -0
README.md
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: ["ru"]
|
| 3 |
+
tags:
|
| 4 |
+
- russian
|
| 5 |
+
- classification
|
| 6 |
+
- sentiment
|
| 7 |
+
- multiclass
|
| 8 |
+
widget:
|
| 9 |
+
- text: "����� ������� ��� ���� �������� ����!"
|
| 10 |
+
---
|
| 11 |
+
## Sentiment model based on rubert-base-cased-conversational
|
| 12 |
+
This model was initialized with [rubert-base-cased-conversational](https://huggingface.co/DeepPavlov/rubert-base-cased-conversational) weights and trained on a batch of datasets collected by [Smetanin](https://duckduckgo.com), using the same training sampling presented in [this wonderful work](https://huggingface.co/cointegrated/rubert-tiny-sentiment-balanced). This approach allows for a uniform distribution among different datasets and three classes of sentiment labels: negative, neutral, and positive. Datasets were prepared by David Dale and are hosted [here](https://drive.google.com/file/d/1dir_lixYfReDXxRS5oGGljH8T_f7vVqm/view).
|
| 13 |
+
|
| 14 |
+
I chose rubert-base-cased-conversational weights because, according to Smetanin's work, this model ranks first among all other multilingual and popular Russian language models with BERT base architecture.
|
| 15 |
+
|
| 16 |
+
### Training and Testing Details
|
| 17 |
+
This model was trained and tested using the code and hyperparameters from the [rubert-tiny-sentiment-balanced](https://huggingface.co/cointegrated/rubert-tiny-sentiment-balanced) work.
|
| 18 |
+
|
| 19 |
+
### Labels
|
| 20 |
+
There are only three labels: negative - 0, neutral - 1, positive - 2
|
| 21 |
+
|
| 22 |
+
## Results
|
| 23 |
+
It outperforms rubert-tiny-sentiment-balanced on four datasets, underperforms on one (linis), and has the same performance on mokoron and rureviews. See [this](https://huggingface.co/cointegrated/rubert-tiny-sentiment-balanced) for the comparison.
|
| 24 |
+
|
| 25 |
+
| Source | Macro F1 |
|
| 26 |
+
| ----------- | ----------- |
|
| 27 |
+
| SentiRuEval2016_banks | 0.88 |
|
| 28 |
+
| SentiRuEval2016_tele | 0.79 |
|
| 29 |
+
| kaggle_news | 0.73 |
|
| 30 |
+
| linis | 0.46 |
|
| 31 |
+
| mokoron | 0.98 |
|
| 32 |
+
| rureviews | 0.77 |
|
| 33 |
+
| rusentiment | 0.74 |
|
config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "./rubert-base-cased-conversational",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertForSequenceClassification"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"directionality": "bidi",
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"id2label": {
|
| 13 |
+
"0": "negative",
|
| 14 |
+
"1": "neutral",
|
| 15 |
+
"2": "positive"
|
| 16 |
+
},
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 3072,
|
| 19 |
+
"label2id": {
|
| 20 |
+
"negative": 0,
|
| 21 |
+
"neutral": 1,
|
| 22 |
+
"positive": 2
|
| 23 |
+
},
|
| 24 |
+
"layer_norm_eps": 1e-12,
|
| 25 |
+
"max_position_embeddings": 512,
|
| 26 |
+
"model_type": "bert",
|
| 27 |
+
"num_attention_heads": 12,
|
| 28 |
+
"num_hidden_layers": 12,
|
| 29 |
+
"output_past": true,
|
| 30 |
+
"pad_token_id": 0,
|
| 31 |
+
"pooler_fc_size": 768,
|
| 32 |
+
"pooler_num_attention_heads": 12,
|
| 33 |
+
"pooler_num_fc_layers": 3,
|
| 34 |
+
"pooler_size_per_head": 128,
|
| 35 |
+
"pooler_type": "first_token_transform",
|
| 36 |
+
"position_embedding_type": "absolute",
|
| 37 |
+
"problem_type": "single_label_classification",
|
| 38 |
+
"torch_dtype": "float32",
|
| 39 |
+
"transformers_version": "4.26.1",
|
| 40 |
+
"type_vocab_size": 2,
|
| 41 |
+
"use_cache": true,
|
| 42 |
+
"vocab_size": 119547
|
| 43 |
+
}
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70b394766f740ff58672f9a80322965002849db45c45dcfb9c47590d52eda1a5
|
| 3 |
+
size 711493997
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"mask_token": "[MASK]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"sep_token": "[SEP]",
|
| 6 |
+
"unk_token": "[UNK]"
|
| 7 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": "[CLS]",
|
| 3 |
+
"do_basic_tokenize": true,
|
| 4 |
+
"do_lower_case": false,
|
| 5 |
+
"mask_token": "[MASK]",
|
| 6 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 7 |
+
"name_or_path": "./rubert-base-cased-conversational",
|
| 8 |
+
"never_split": null,
|
| 9 |
+
"pad_token": "[PAD]",
|
| 10 |
+
"sep_token": "[SEP]",
|
| 11 |
+
"special_tokens_map_file": "./rubert-base-cased-conversational/special_tokens_map.json",
|
| 12 |
+
"strip_accents": null,
|
| 13 |
+
"tokenize_chinese_chars": true,
|
| 14 |
+
"tokenizer_class": "BertTokenizer",
|
| 15 |
+
"unk_token": "[UNK]"
|
| 16 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|