File size: 4,847 Bytes
66407c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
- Preprocess data and split the training set into 75% for training RM and 25% for validting RM.
- All the training data is used to train SFT and RL.
- Both chosen and rejected is used to train SFT
"""

import argparse
import os

import pandas as pd
from datasets import load_dataset
from tqdm.auto import tqdm

from verl.utils.fs import copy, makedirs


def generate_sft_dataset(target_hdfs_path_dir, local_dir="~/data/full_hh_rlh/sft"):
    dataset = load_dataset("Dahoas/full-hh-rlhf")
    output = {"prompt": [], "response": []}
    for data in tqdm(dataset["train"]):
        # add chosen
        output["prompt"].append(data["prompt"])
        output["response"].append(data["chosen"])

        # add rejection
        output["prompt"].append(data["prompt"])
        output["response"].append(data["rejected"])

    df = pd.DataFrame(output)

    local_dir = os.path.expanduser(local_dir)
    os.makedirs(local_dir, exist_ok=True)

    local_path = os.path.join(local_dir, "train.parquet")

    df.to_parquet(path=local_path)

    if target_hdfs_path_dir is not None:
        hdfs_dir = target_hdfs_path_dir + "/" + "train.parquet"
        makedirs(hdfs_dir)

        copy(local_path, hdfs_dir)


def generate_rm_dataset(target_hdfs_path_dir, local_dir="~/data/full_hh_rlh/rm"):
    train_dataset = load_dataset("Dahoas/full-hh-rlhf", split="train[:75%]")
    test_dataset = load_dataset("Dahoas/full-hh-rlhf", split="train[-25%:]")

    local_dir = os.path.expanduser(local_dir)
    os.makedirs(local_dir, exist_ok=True)

    for dataset, name in zip([train_dataset, test_dataset], ["train", "test"]):
        output = {"prompt": [], "chosen": [], "rejected": []}
        for data in tqdm(dataset):
            # add chosen
            output["prompt"].append(data["prompt"])
            output["chosen"].append(data["chosen"])
            output["rejected"].append(data["rejected"])

        df = pd.DataFrame(output)

        local_path = os.path.join(local_dir, name + ".parquet")

        df.to_parquet(path=local_path)

        if target_hdfs_path_dir is not None:
            hdfs_dir = target_hdfs_path_dir + "/" + name + ".parquet"
            makedirs(hdfs_dir)

            copy(local_path, hdfs_dir)


def generate_rl_dataset(target_hdfs_path_dir, local_dir="~/data/full_hh_rlhf/rl"):
    dataset = load_dataset("Dahoas/full-hh-rlhf")
    train_dataset = dataset["train"]

    data_source = "Dahoas/full-hh-rlhf"

    # add a row to each data item that represents a unique id
    def make_map_fn(split):
        def process_fn(example, idx):
            prompt = example.pop("prompt")
            response = example.pop("response")

            data = {
                "data_source": data_source,
                "prompt": [{"role": "user", "content": prompt}],
                "ability": "alignment",
                "reward_model": {
                    "style": "model",
                    "ground_truth": response,  # should not be used
                },
                "extra_info": {"split": split, "index": idx},
            }
            return data

        return process_fn

    train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True)
    local_dir = os.path.expanduser(local_dir)
    local_path = os.path.join(local_dir, "train.parquet")
    train_dataset.to_parquet(local_path)

    if target_hdfs_path_dir is not None:
        hdfs_dir = target_hdfs_path_dir + "/" + "train.parquet"
        makedirs(hdfs_dir)

        copy(local_path, hdfs_dir)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--split", type=str, choices=["sft", "rm", "rl"], required=True)
    parser.add_argument("--local_dir", type=str, default="~/data/full_hh_rlhf")
    parser.add_argument("--hdfs_dir", type=str, required=False, default=None)

    args = parser.parse_args()

    if args.split == "sft":
        generate_sft_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split))
    elif args.split == "rm":
        generate_rm_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split))
    elif args.split == "rl":
        generate_rl_dataset(args.hdfs_dir, os.path.join(args.local_dir, args.split))
    else:
        raise NotImplementedError