File size: 4,451 Bytes
66407c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright 2024 Bytedance Ltd. and/or its affiliates

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Create a simple multi-turn dataset for testing
"""

import argparse
import os

import pandas as pd


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--local_dir", default="~/data/multiturn")
    parser.add_argument("--hdfs_dir", default=None)
    args = parser.parse_args()

    # Create example conversations
    conversations = []

    # Conversation 1
    conversations.append(
        {
            "messages": [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "What is the capital of France?"},
                {"role": "assistant", "content": "The capital of France is Paris."},
                {"role": "user", "content": "And what about Germany?"},
                {"role": "assistant", "content": "The capital of Germany is Berlin."},
            ]
        }
    )

    # Conversation 2
    conversations.append(
        {
            "messages": [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Can you explain quantum computing?"},
                {
                    "role": "assistant",
                    "content": "Quantum computing is a type of computing that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data.",
                },
                {"role": "user", "content": "How is it different from classical computing?"},
                {
                    "role": "assistant",
                    "content": "Classical computing uses bits that are either 0 or 1, while quantum computing uses quantum bits or qubits that can exist in multiple states simultaneously due to superposition.",
                },
            ]
        }
    )

    # Conversation 3
    conversations.append(
        {
            "messages": [
                {"role": "system", "content": "You are a helpful assistant."},
                {"role": "user", "content": "Write a simple Python function to calculate factorial."},
                {
                    "role": "assistant",
                    "content": "```python\ndef factorial(n):\n    if n == 0 or n == 1:\n        return 1\n    else:\n        return n * factorial(n-1)\n```\n\nThis is a recursive function to calculate the factorial of a number.",
                },
                {"role": "user", "content": "Can you make it iterative instead?"},
                {
                    "role": "assistant",
                    "content": "```python\ndef factorial(n):\n    result = 1\n    for i in range(1, n+1):\n        result *= i\n    return result\n```\n\nThis is an iterative version of the factorial function.",
                },
            ]
        }
    )

    # Create train and test datasets
    train_data = conversations[:2]  # First 2 conversations for training
    test_data = conversations[2:]  # Last conversation for testing

    # Create output directory
    local_dir = os.path.expanduser(args.local_dir)
    os.makedirs(local_dir, exist_ok=True)

    # Save to parquet files
    train_df = pd.DataFrame(train_data)
    test_df = pd.DataFrame(test_data)

    train_df.to_parquet(os.path.join(local_dir, "train.parquet"))
    test_df.to_parquet(os.path.join(local_dir, "test.parquet"))

    # Handle HDFS if specified
    if args.hdfs_dir is not None:
        try:
            from verl.utils.hdfs_io import copy, makedirs

            makedirs(args.hdfs_dir)
            copy(src=local_dir, dst=args.hdfs_dir)
        except ImportError:
            print("Warning: HDFS support not available. Skipping HDFS copy.")

    # Print statistics
    print(f"Train dataset size: {len(train_df)}")
    print(f"Test dataset size: {len(test_df)}")
    print(f"Data saved to {local_dir}")


if __name__ == "__main__":
    main()