File size: 6,848 Bytes
66407c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023-2024 SGLang Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import os
import tempfile

import pandas as pd
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import EntryNotFoundError

from verl.utils.hdfs_io import copy, makedirs

# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

# Configuration constants
DEFAULT_SYSTEM_CONTENT = "You are a helpful and harmless assistant."
DEFAULT_USER_CONTENT_PREFIX = (
    "Answer the given question. You must conduct reasoning inside <think> and </think> "
    "first every time you get new information. After reasoning, if you find you lack "
    "some knowledge, you can call a search engine by <tool_call> query </tool_call> "
    "and it will return the top searched results between <tool_response> and "
    "</tool_response>. You can search as many times as your want. If you find no "
    "further external knowledge needed, you can directly provide the answer inside "
    "<answer> and </answer>, without detailed illustrations. For example, "
    "<answer> Beijing </answer>. Question: "
)


def process_single_row(row, current_split_name, row_index):
    """

    Process a single row of data for SearchR1-like format.



    Args:

        row: DataFrame row containing the original data

        current_split_name: Name of the current split (train/test)

        row_index: Index of the row in the DataFrame



    Returns:

        pd.Series: Processed row data in the required format

    """
    question = row.get("question", "")

    # Build prompt structure
    user_content = user_content_prefix.rstrip("\n") + question
    prompt = [{"role": "system", "content": system_content}, {"role": "user", "content": user_content}]

    # Extract ground truth from reward_model or fallback to golden_answers
    reward_model_data = row.get("reward_model")
    if isinstance(reward_model_data, dict) and "ground_truth" in reward_model_data:
        ground_truth = reward_model_data.get("ground_truth")
    else:
        ground_truth = row.get("golden_answers", [])

    # Process data source
    data_source_tagged = "searchR1_" + str(row.get("data_source", ""))

    # Build tools kwargs structure
    tools_kwargs = {"search": {"create_kwargs": {"ground_truth": ground_truth, "question": question, "data_source": data_source_tagged}}}

    # Build complete extra_info structure
    extra_info = {
        "index": row_index,
        "need_tools_kwargs": True,
        "question": question,
        "split": current_split_name,
        "tools_kwargs": tools_kwargs,
    }

    return pd.Series(
        {
            "data_source": data_source_tagged,
            "prompt": prompt,
            "ability": row.get("ability"),
            "reward_model": reward_model_data,
            "extra_info": extra_info,
            "metadata": row.get("metadata"),
        }
    )


def main():
    local_save_dir = os.path.expanduser(args.local_dir)
    os.makedirs(local_save_dir, exist_ok=True)

    processed_files = []

    # Download and process files using temporary directory
    with tempfile.TemporaryDirectory() as tmp_download_dir:
        for split in ["train", "test"]:
            parquet_filename = f"{split}.parquet"
            logger.info(f"Processing {split} split...")

            try:
                # Download Parquet file from HuggingFace
                logger.info(f"Downloading {parquet_filename} from {args.hf_repo_id}")
                local_parquet_filepath = hf_hub_download(
                    repo_id=args.hf_repo_id,
                    filename=parquet_filename,
                    repo_type="dataset",
                    local_dir=tmp_download_dir,
                    local_dir_use_symlinks=False,
                )

                # Load and process Parquet file
                df_raw = pd.read_parquet(local_parquet_filepath)
                logger.info(f"Loaded {len(df_raw)} rows from {parquet_filename}")

                def apply_process_row(row, split_name=split):
                    return process_single_row(row, current_split_name=split_name, row_index=row.name)

                df_processed = df_raw.apply(apply_process_row, axis=1)

                # Save processed DataFrame
                output_file_path = os.path.join(local_save_dir, f"{split}.parquet")
                df_processed.to_parquet(output_file_path, index=False)
                logger.info(f"Saved {len(df_processed)} processed rows to {output_file_path}")
                processed_files.append(output_file_path)

            except EntryNotFoundError:
                logger.warning(f"{parquet_filename} not found in repository {args.hf_repo_id}")
            except Exception as e:
                logger.error(f"Error processing {split} split: {e}")

    if not processed_files:
        logger.warning("No data was processed or saved")
        return

    logger.info(f"Successfully processed {len(processed_files)} files to {local_save_dir}")

    # Copy to HDFS if specified
    if args.hdfs_dir:
        try:
            makedirs(args.hdfs_dir)
            copy(src=local_save_dir, dst=args.hdfs_dir)
            logger.info(f"Successfully copied files to HDFS: {args.hdfs_dir}")
        except Exception as e:
            logger.error(f"Error copying files to HDFS: {e}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Download Search-R1 from HuggingFace, process, and save to Parquet.")
    parser.add_argument("--hf_repo_id", default="PeterJinGo/nq_hotpotqa_train", help="HuggingFace dataset repository ID.")
    parser.add_argument("--local_dir", default="~/data/searchR1_processed_direct", help="Local directory to save the processed Parquet files.")
    parser.add_argument("--hdfs_dir", default=None, help="Optional HDFS directory to copy the Parquet files to.")

    args = parser.parse_args()

    # System and user content configuration
    system_content = DEFAULT_SYSTEM_CONTENT
    user_content_prefix = DEFAULT_USER_CONTENT_PREFIX

    main()