zswzswzsw's picture
Upload folder using huggingface_hub
66407c5 verified
# Copyright 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Preprocess the MATH-lighteval dataset to parquet format
"""
import argparse
import os
import datasets
from verl.utils.hdfs_io import copy, makedirs
from verl.utils.reward_score.math import last_boxed_only_string, remove_boxed
def extract_solution(solution_str):
return remove_boxed(last_boxed_only_string(solution_str))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--local_dir", default="~/data/math")
parser.add_argument("--hdfs_dir", default=None)
args = parser.parse_args()
# 'lighteval/MATH' is no longer available on huggingface.
# Use mirror repo: DigitalLearningGmbH/MATH-lighteval
data_source = "DigitalLearningGmbH/MATH-lighteval"
print(f"Loading the {data_source} dataset from huggingface...", flush=True)
dataset = datasets.load_dataset(data_source, trust_remote_code=True)
train_dataset = dataset["train"]
test_dataset = dataset["test"]
instruction_following = "Let's think step by step and output the final answer within \\boxed{}."
# add a row to each data item that represents a unique id
def make_map_fn(split):
def process_fn(example, idx):
question = example.pop("problem")
question = question + " " + instruction_following
answer = example.pop("solution")
solution = extract_solution(answer)
data = {
"data_source": data_source,
"prompt": [{"role": "user", "content": question}],
"ability": "math",
"reward_model": {"style": "rule", "ground_truth": solution},
"extra_info": {"split": split, "index": idx},
}
return data
return process_fn
train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True)
test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True)
local_dir = args.local_dir
hdfs_dir = args.hdfs_dir
train_dataset.to_parquet(os.path.join(local_dir, "train.parquet"))
test_dataset.to_parquet(os.path.join(local_dir, "test.parquet"))
if hdfs_dir is not None:
makedirs(hdfs_dir)
copy(src=local_dir, dst=hdfs_dir)