Contextual AI Reranker v2
Collection
Family of instruction-following multilingual rerankers on the cost/performance Pareto frontier across public and customer benchmarks
•
6 items
•
Updated
•
9
Contextual AI's reranker is the first instruction-following reranker capable of handling retrieval conflicts and ranking with custom instructions (e.g., prioritizing recent information). It achieves state-of-the-art performance on BEIR and sits on the cost/performance Pareto frontier across:
For detailed benchmarks, see our blog post.
Use this reranker when you need to:
# Requires vLLM==0.10.0 for NVFP4 support
# See full implementation below
model_path = "ContextualAI/ctxl-rerank-v2-instruct-multilingual-6b-nvfp4"
query = "What are the health benefits of exercise?"
instruction = "Prioritize recent medical research"
documents = [
"Regular exercise reduces risk of heart disease and improves mental health.",
"A 2024 study shows exercise enhances cognitive function in older adults.",
"Ancient Greeks valued physical fitness for military training."
]
infer_w_vllm(model_path, query, instruction, documents)
Expected Output:
Query: What are the health benefits of exercise?
Instruction: Prioritize recent medical research
Score: 0.8542 | Doc: A 2024 study shows exercise enhances cognitive function in older adults.
Score: 0.7891 | Doc: Regular exercise reduces risk of heart disease and improves mental health.
Score: 0.4123 | Doc: Ancient Greeks valued physical fitness for military training.
Requires vllm==0.10.0 for NVFP4 support.
import os
os.environ['VLLM_USE_V1'] = '0' # v1 engine doesn't support logits processor yet
import torch
from vllm import LLM, SamplingParams
def logits_processor(_, scores):
"""Custom logits processor for vLLM reranking."""
index = scores[0].view(torch.uint16)
scores = torch.full_like(scores, float("-inf"))
scores[index] = 1
return scores
def format_prompts(query: str, instruction: str, documents: list[str]) -> list[str]:
"""Format query and documents into prompts for reranking."""
if instruction:
instruction = f" {instruction}"
prompts = []
for doc in documents:
prompt = f"Check whether a given document contains information helpful to answer the query.\n<Document> {doc}\n<Query> {query}{instruction} ??"
prompts.append(prompt)
return prompts
def infer_w_vllm(model_path: str, query: str, instruction: str, documents: list[str]):
model = LLM(
model=model_path,
gpu_memory_utilization=0.85,
max_model_len=8192,
dtype="bfloat16",
max_logprobs=2,
max_num_batched_tokens=262144,
)
sampling_params = SamplingParams(
temperature=0,
max_tokens=1,
logits_processors=[logits_processor]
)
prompts = format_prompts(query, instruction, documents)
outputs = model.generate(prompts, sampling_params, use_tqdm=False)
# Extract scores and create results
results = []
for i, output in enumerate(outputs):
score = (
torch.tensor([output.outputs[0].token_ids[0]], dtype=torch.uint16)
.view(torch.bfloat16)
.item()
)
results.append((score, i, documents[i]))
# Sort by score (descending)
results = sorted(results, key=lambda x: x[0], reverse=True)
print(f"Query: {query}")
print(f"Instruction: {instruction}")
for score, doc_id, doc in results:
print(f"Score: {score:.4f} | Doc: {doc}")
# Example usage
if __name__ == "__main__":
model_path = "ContextualAI/ctxl-rerank-v2-instruct-multilingual-6b-nvfp4"
query = "What are the health benefits of exercise?"
instruction = "Prioritize recent medical research"
documents = [
"Regular exercise reduces risk of heart disease and improves mental health.",
"A 2024 study shows exercise enhances cognitive function in older adults.",
"Ancient Greeks valued physical fitness for military training."
]
infer_w_vllm(model_path, query, instruction, documents)
If you use this model, please cite:
@misc{ctxl_rerank_v2_instruct_multilingual,
title={Contextual AI Reranker v2},
author={Halal, George and Agrawal, Sheshansh},
year={2025},
url={https://contextual.ai/blog/rerank-v2},
}
Creative Commons Attribution Non Commercial Share Alike 4.0 (cc-by-nc-sa-4.0)
For questions or issues, please open an issue on the model repository.